
Automated File Transfer for Windows PCs

FileLink

User's Guide

-and-

Programmer's Reference

Serengeti Systems, Inc.

®

FileLink

Automated File Transfer for Windows PCs

by Serengeti Systems Incorporated

www.serengeti.com

®

FileLink is sold as is. Serengeti Systems makes no representations or warranties with respect to the
contents hereof and specifically disclaims any implied warranties for a particular purpose

Serengeti Systems shall have no liability for loss or damage caused or alleged to be caused directly by
this computer program, including but not limited to interruption of service, loss of business or
anticipatory profits or consequential damages resulting from the use of this program.

Further, Serengeti Systems reserves the right to revise this publication and program from time to time
without notice.

FileLink

Copyright (c) 2013 Serengeti Systems Incorporated

Serengeti Systems Incorporated

1108 Lavaca Street, Suite 110 PMB 431

Austin, Texas 78701 USA

www.robo-ftp.com

www.serengeti.com

FileLink 3.24

2013 Serengeti Systems Incorporated

Table of Contents

Notice to Evaluation Users 10

FileLink User's Guide 11

... 11Notational Conventions

... 11Introducing FileLink

... 13FileLink Features Overview

... 14General Features

... 15File Transfer Features

... 16Script Language Features

... 16Running FileLink

... 18Configuration for Current User vs. All Users

... 19Command Line Switches

... 22FileLink Console Window

... 23FileLink Console Window Details

... 25File Menu

... 26Tools Menu

... 27Scripts Menu

... 28Applets Menu

... 29Help Menu

... 30System Menu

... 31Using FileLink

... 31Getting Online Help

... 32Entering Commands in the Console Window

... 35Scheduling File Transfers With FileLink

... 37Modems and FileLink

... 38Detecting Modems at Startup

... 39Running FileLink With Prompt.s

... 40Running FileLink as an Icon

... 40FileLink and PGP Cryptography

... 41PGP Public and Private Keys

... 42PGP Passphrases

... 43PGP ASCII Armoring

... 44PGP Digital Signatures

... 45FileLink's Implementation of PGP

... 47Backing Up Your Keyring File Set

... 48Using PGP With FileLink Step-By-Step Guide

... 49Using the FileLink Configurator

... 51File Configuration

... 52Hardware Configuration

... 53Modem Configuration

... 54Terminal Configuration

... 55Transfer Configuration

... 56File Transfer Protocol Configuration

... 57ASCII File Transfers

... 58Kermit File Transfers

... 59Xmodem File Transfers

5Contents

2013 Serengeti Systems Incorporated

... 60Xmodem1K File Transfers

... 61Ymodem File Transfers

... 62Zmodem File Transfers

... 63PGP Configuration

... 64PGP Configuration: Create Key

... 65PGP Configuration: Select Key

... 66PGP Configuration: Manage Keys

... 67User vs. Machine Configuration

... 68Using the FileLink TTY Terminal Applet

... 69Terminal Connection Menu

... 70Terminal Settings Menu

... 71Terminal File Transfer Menu

... 72Termnal Help Menu

... 72The FileLink Script File Editor

... 73Script Programming

... 75Script File Command Arguments

... 76Script File Alphanumeric Constants

... 77Script File Numeric Constants

... 78Script File Variables

... 79Script File Command Options

... 80Labels in Script Files

... 81Comments in Script Files

... 82Debugging Script Files

... 83Using Variables in Command Options

... 85Using Functions

... 89Performing Variable Arithmetic and Numeric Comparisons

... 90Performing Date Arithmetic

... 91Controlling Script Command Logging

... 92Scheduling Script Operation

... 93Sending and Receiving E-mail in Script Files

... 94Using Shortcut Target Arguments in Script Files

... 95Authorizing Remote Users in TTY Mode

... 96Authorization File Format

... 96Internal Script Variables

... 99Using the %cr, %crlf, and %lf Variables

... 100Using the %currentlocaldir Variable

... 101Using the %date, and %datetime, and %time Variables

... 102Using the %dbqueryrawresult, %dbqueryrows and %dbqueryvariables Variables

... 103Using the %difffileid, %difffilename, and %difffiletext Variables

... 104Using the %difffiles and %diffnum Variables

... 105Using the %lasterror Variable

... 106Using the %lasterrormsg Variable

... 107Using the %lastfile and %lastpath Variables

... 108Using the %nextcmd Variable

... 109Using the %newport Variable

... 110Using the %nextfile, %nextpath, and %nextfolder Variables

... 111Using the %nextfiledate, %nextfiledatetime, and %nextfiletime Variables

... 112Using the %port Variable

... 113Using the %rcvfilecount and %sendfilecount Variables

... 114Using the %snapshotfiles Variable

... 115Using the %zipcount and %upzipcount Variables

... 115Script File Command Overview

FileLink 3.26

2013 Serengeti Systems Incorporated

... 119Script Commands Grouped by Function

... 123ANSWER -- Wait for incoming telephone call

... 124APPEND -- Append one local file to another

... 125ARCHIVEDIR -- Define FileLink's archive folder

... 126ASK -- Display dialog box with yes/no question

... 128AUTHDATA -- Obtain user data from authorization file

... 129AUTHPW -- Verify remote user password

... 130AUTHUSER -- Verify remote user name

... 131BEGINFUNCTIONS -- Begin function declaration section

... 132BREAK -- Set a breakpoint location

... 133BROWSE -- Display a pop-up open file dialog box

... 134CALL -- Call another script file

... 135CHAIN -- Transfer to another script file

... 136CHGDIR -- Change local default folder

... 137CONNECT -- Open direct connection

... 138CONSOLE -- Control output to console window

... 139COPY -- Copy one local file to another location

... 140CREATEMAIL -- Create an e-mail message

... 141CRON -- Schedule script operations

... 144DATEADD-- Add specified number of days to date variable

... 145DATESUB -- Subtract specified number of days from date variable

... 146DBCLOSE -- Close and optionally delete SQL database file

... 147DBGETRESULTS -- Get results from a SQL database query

... 148DBQUERY -- Issue a SQL query

... 149DBREWIND -- Reset query results pointer to first row of results

... 150DBUSE -- Create and/or open a SQL database file

... 151DEC -- Decrement a variable by one

... 152DELDIR -- Delete an empty local folder

... 153DELETE -- Delete a local file

... 154DIAL -- Initiate modem auto-dialer

... 155DIFF -- Look for differences in the local PC file system

... 156DIFFREWIND -- Reset file pointer for GETDIFF command

... 157DISPLAY -- Display all or a specified variable

... 158DISCONNECT -- Disconnect the line

... 159DOSCMD -- Execute an MS-DOS command

... 160ENDFUNCTION -- End function declaration

... 161ENDFUNCTIONS -- End function declaration section

... 162EXEC -- Execute a external program

... 164EXIT -- Quit FileLink

... 165EXPORT -- Export Configuration Settings

... 166FLUSH -- Flush characters from receive buffer

... 167FUNCTION -- Begin a function declaration

... 168GETDIFF -- Get specific changes within local PC file system

... 170GETFILE -- Get file from folder structure on local PC

... 171GETMAIL -- Get an e-mail message

... 173GETNEXTFILE -- Get file or folder names on local PC

... 176GETREWIND -- Reset file pointer for GETFILE command

... 177GO -- Rerun the currently defined script file

... 178GOTO -- Direct flow to label

... 179IFDATE -- Conditional branch upon file date comparison

... 181IFERROR -- Conditional branch after testing result code

... 182IFFILE -- Conditional branch on file existence

... 183IFNFILE -- Conditional branch on file non-existence

... 184IFNO -- Conditional branch if 'No' is clicked in ASK dialog box

7Contents

2013 Serengeti Systems Incorporated

... 185IFNSTRCMP -- Conditional branch when two string variables are not equal

... 186IFNSUBSTR -- Conditional branch if sub-string is not found in string variable

... 187IFNUM -- Conditional branch upon numeric variable comparison

... 188IFSIZE -- Conditional branch upon file size comparison

... 189IFSTRCMP -- Conditional branch when two string variables are equal

... 190IFSUBSTR -- Conditional branch if sub-string is found in string variable

... 191IFTIME -- Conditional branch upon time comparison

... 193IFYES -- Conditional branch if 'Yes' is clicked in ASK dialog box

... 194IMPORT -- Import Configuration Settings

... 195INC -- Increment a variable by one

... 196LINEIN -- Read one or more characters from COM port

... 198LINEOUT -- Write one or more characters to COM port

... 200LISTDIR -- List local directory to a file

... 201LOG -- Control the script log file

... 203LOGMSG -- Write a message to the script log file

... 204LOGNTEVENT -- Write a message to the NT application event log

... 205LOOPIF -- Conditional branch used in conjunction with LOOPCOUNT

... 206LOOPTO -- Unconditional branch used in conjunction with LOOPCOUNT

... 207LOOPCOUNT -- Set maximum loop repetition

... 208MAILTO -- Send an e-mail message via default e-mail client

... 209MAKEDIR -- Create a new local folder

... 210MAKEFILENAME -- Create a unique, non-existent file name

... 211MESSAGEBOX -- Display text in message box

... 213MINIMIZE -- Minimize FileLink window

... 214MODEMCMD -- Send AT command string to modem

... 215MODEMDEFAULTS -- Set modem to factory defaults

... 216MODEMDETECT -- Locate first available modem and/or COM port

... 217MODEMRESET -- Send reset to modem

... 218MODEMRESP -- Read modem response

... 219MOVE -- Move one local file to another location

... 220NATO -- Specify a no activity time-out

... 221PAUSE -- Pause for specified length of time or until specified hour:minute

... 222PERFORM -- Execute script command contained in character string or variable

... 223PGPCOMMAND -- Send a "raw" GnuPG command

... 225PGPDECRYPT -- Decrypt a PGP encrypted file

... 228PGPENCRYPT -- Encrypt a file using PGP

... 232PGPIMPORT -- Import a PGP key

... 233PLAYSOUND -- Play a sound (.wav) file

... 234PRESSANYKEY -- Suspend script execution pending a key press

... 235PRINT -- Print a file

... 237PROMPT -- Display message box with title and prompt, and accept user input

... 238PROTOCOL -- Specify default file transfer protocol

... 240RCVFILE -- Receive one or more files

... 242READFILE -- Read string variable value from text file

... 244REMOTECMD -- Perform a script command received via a COM port

... 245RENAME -- Rename a file

... 246RESTORE -- Restore minimized FileLink window to original size

... 247RESUME -- Resume script execution from a breakpoint

... 248RETURN -- Return from a called script file or function

... 250SENDCMD -- Send script command (same as LINEOUT)

... 251SENDFILE -- Send one or more files

... 253SENDMAIL -- Send an e-mail message

... 254SET -- Assign or concatenate string variable(s)

... 256SETEXTRACT -- Extract delimited substring from a string

FileLink 3.28

2013 Serengeti Systems Incorporated

... 257SETLEFT -- Extract left substring

... 258SETLEN -- Assign length of specified string to a variable

... 259SETMID -- Extract mid substring

... 260SETNUM -- Assign or evaluate numeric variable(s)

... 262SETRIGHT -- Extract right substring

... 263SETSUBSTR -- Find number of substrings in string

... 264SNAPSHOT -- Take a “snapshot” of the local PC file system

... 265SPEAKER -- Control modem speaker mode

... 266SRVNAME -- Define service name and control interaction with SrvMonitor

... 267STOP -- Stops script processing

... 268TERMINAL -- Activate Terminal applet

... 269TRACELOG -- Control the trace log file

... 271TRACEWIN -- Activate/deactivate trace window

... 273UNZIP - Extract file(s) from a zip archive

... 275USEPORT -- Specify COM port and/or port settings

... 277WORKINGDIR -- Specify default working folder

... 278WRITEFILE -- Write character string or string variable value to text file

... 279ZIP -- Create or add to a zip archive

... 280Sample Script Files

... 281Simple Async Dial-Up Connection

... 282Simple Async Dial-Up Connection With Error Recovery

... 283Dial-Up Connection Performing a Logon

... 284Dial-In Connection With Authorization

... 285Installing FileLink as an NT Service

... 287Shutting Down a Running FileLink Service

... 288Monitoring a FileLink Service

... 290Using the CronMaker Utility

... 292CronMaker Event Creation Example

... 293CronMaker Event Creation Example P2

... 294CronMaker Event Creation Example P3

... 295CronMaker Event Creation Example P4

... 296Cron Event File Format

... 298Using COM/OLE to Control FileLink

... 299COM/OLE Operational Overview

... 300Sample C++ and Visual Basic Project Files

... 302FileLink COM/OLE Interface Description - A Programmer's View

... 303FLStartSession -- Method to initiate a FileLink session

... 304FLEndSession -- Method to terminate a FileLink session

... 305FLSendCommand -- Method to send a script command to FileLink

... 307FLStopCommand -- Method to stop a running FileLink script command

... 308FLGetVariable -- Method to get the value of a FileLink script variable

... 309FLGetVBSVariable -- VBS method to get the value of FileLink script variable

... 310FLCommandProgress -- Event fired to update SENDFILE/RCVFILE progress

... 311FLCommandResult -- Event fired at the conclusion of a non-blocking command

... 312FLLogMsgs -- Event fired to provide script log information

... 313COM/OLE Return Codes

... 314Sample VBScript Program

... 314Using Script File Result Codes

9Contents

2013 Serengeti Systems Incorporated

Index 320

10

2013 Serengeti Systems Incorporated

Notice to Evaluation Users

Thank you for your interest in FileLink®.

We are pleased that you have taken the time to obtain this evaluation version of FileLink. You
have 30 days from the time you install the software to put FileLink through its paces. If you
decide to continue using FileLink past 30 days, simply contact us to purchase the product, and
we’ll authorize the version you have for unlimited use.

Important

All authorization of FileLink is performed through the program’s Help menu.
There are instructions provided for each step of the license authorization
process if you elect to purchase FileLink.

We’ll keep you informed about changes to FileLink so you can always be up to date. We also
encourage you to give us feedback (both positive and negative) about your experience with
FileLink.

Thanks again!

11Notational Conventions

2013 Serengeti Systems Incorporated

FileLink User's Guide

Notational Conventions

Various fonts, type styles, and notations are used throughout this help file to make it more
understandable. Below is a list of type examples with explanations of their purpose in this file.

OPCODE Upper case Courier font is used for FileLink script commands inexamples
throughout this help document; script command opcodes may be upper or
lower case in actual use

(Esc) Bolded and inside (..) are references to named keys on the keyboard

variable Bolded text within paragraph bodies refer to FileLink command variables or is
also used to indicate a file name

/option Bolded text within paragraph bodies preceded by a / refer to FileLink
command options

 [text] Text inside [..] refer to script command arguments or variables in syntax
descriptions

=nn, or nn Italicized n’s refer to numeric values

="xxx" Italicized x’s in quotation marks refer to string values

[..] | [..] The vertical bar reads as or meaning either one or the other or both of the [..]
items may be present

Introducing FileLink

We call FileLink® The Automated File Transfer Solution.

FileLink brings the power of mainframe oriented batch, unattended file transfer operation to the
everyday world of asynchronous modem protocol (Xmodem, Zmodem, etc.).

FileLink’s design is centered around the execution of script files but the product also includes
simple but very capable TTY-style terminal emulator capable of ANSI, DEC, Televideo, Wyse
and other “glass teletype” terminal emulation.

By providing automated, unattended operation, FileLink can be set up to send and receive files
at any time of the day or night. For example, FileLink’s powerful script language can place a
call through your modem, recognize and send character strings (such as logon and password
sequences), send and receive text and binary files using a variety of file transfer protocols, and
detect and recover from errors.

12

2013 Serengeti Systems Incorporated

Advanced scripting that takes advantage of FileLink’s integrated SQL database and PGP
encryption/decryption capabilities is also possible.

FileLink maintains a detailed log file to record the events of a file transfer session. Each log file
entry is stamped with the system date and time and records the step-by-step activity of a
session for later review. Each log entry is immediately written to the log file so it is always up to
date - even if your system loses power or crashes.

In summary, FileLink has been designed from the ground up as an unattended, file transfer
package. Many other popular asynchronous communications packages designed for attended
operation are excellent if you are there to drive, but often come up short if your needs call for
unattended operation. For those times, there is FileLink.

See also: FileLink Features

13Introducing FileLink

2013 Serengeti Systems Incorporated

FileLink Features Overview

Serengeti Systems has been making mainframe file transfer products for almost 20 years. We
now bring all that knowledge to world of async modem with the introduction of FileLink.

You can find a comprehensive list of FileLink features by following the links below.

General Features

File Transfer Features

Script Language Features

14

2013 Serengeti Systems Incorporated

General Features

Ø Multi-threaded 32-bit Windows application

Ø Powerful script language for completely unattended operation

Ø Support for popular asynchronous file transfer protocols including Xmodem, Kermit,
Ymodem, and Zmodem

Ø FileLink Script File Editor (or any other editor) access for script file editing

Ø CronMaker utility to easily manage scheduling of script events associated with the
CRON script command

Ø Auto-dial & auto-answer with Hayes compatible modems

Ø Direct connection for modem-less connections

Ø Up to 56K bps over dial-up lines; up to 115.2K bps for direct connections

Ø Send and receive e-mail messages with SMTP and POP servers under script control

Ø “Hot send” feature for automatic file transmission

Ø Automatic naming of received files

Ø TTY Terminal applet for built-in, interactive TTY sessions

Ø Emulation of popular TTY terminals like VT100, Wyse, and Televideo

Ø Built-in PGP encryption, decryption, and keyring management support

Ø Complete session log with date and time stamps

Ø Log file management including automatic naming, and maximum size limitation

Ø Multiple simultaneous sessions from a single system

Ø Configurable for COM1 up to COM9 (for FileLink) or simultaneous use of COM1 up
through COM48 (for FileLink XE)

Ø COM/OLE automation built-in providing a script command interface for user-written
applications (sample C++ and Visual Basic projects provided)

15Introducing FileLink

2013 Serengeti Systems Incorporated

File Transfer Features

Ø ASCII mode for simple, unblocked transmission and reception of text files

Ø Kermit protocol for blocked, error-correcting transmission and reception of text and
binary files

Ø Xmodem and Xmodem1K protocol for blocked, error-correcting transmission and
reception of text and binary files

Ø Ymodem protocol for blocked, error-correcting transmission and reception of text and
binary files

Ø Zmodem protocol for blocked, error-correcting transmission and reception of text and
binary files

Ø Override control on remotely named files sent to FileLink

Ø Configurable Kermit compression control

Ø Configurable Kermit 7- or 8-bit data path

Ø Both 128 and 1K block size (Xmodem and Xmodem1K)

Ø Configurable CRC or LRC block checking

Ø Configurable ACK control (referred to as the G-option for the Xmodem1K and
Ymodem protocols)

Ø Configurable Zmodem sliding window

Ø Optional Zmodem recovery from interrupted transmissions (crash recovery)

Ø Configurable Zmodem over-write file control

16

2013 Serengeti Systems Incorporated

Script Language Features

Ø Integrated SQL database support

Ø Integrated PGP encryption and decryption support

Ø Execute scripts from the command line, batch files, parent process, or menu

Ø Execute external processes and evaluate results

Ø Command line parameter substitution

Ø Call scripts from within scripts

Ø Time activated commands

Ø Branching and looping commands

Ø Extensive result codes and error testing

Ø String variables

Ø String and sub-string manipulation

Ø Commands for interactive prompting and messaging

Ø Accept commands from a remote system via a COM port

Ø Accept commands from a client process

Ø Remote user name and password authorization

Ø Write messages directly to NT event log

Ø Complete session log with date and time stamps

Ø Log file management including automatic naming, maximum size limitation

Ø Create or add to zip archive files

Ø Extract file(s) from zip archive files

Running FileLink

The focal point of FileLink’s design centers around the running of script files. FileLink can be
used interactively but the user interface is oriented to the development and testing of script
files. Typically you will use the interactive capabilities of FileLink as necessary to create the
script file you need, and then create one or more shortcuts to launch the program running one
of these previously created script files.

If you allow the configurator to create a shortcut (in the Start menu or on the desktop) for you,
the shortcuts look like the following:

17Running FileLink

2013 Serengeti Systems Incorporated

Shortcut Properties Command line switches

For information on how to run FileLink interactively, follow the following links.

Running FileLink in a Window

Running FileLink With Prompting

Running FileLink as an Icon

Using the FileLink TTY Terminal Applet

18

2013 Serengeti Systems Incorporated

Configuration for Current User vs. All Users

When you configure FileLink, the settings you select are saved in the Windows registry in one
of two locations depending on whether FileLink was installed to be used by the current user
only or any user that may log onto a given PC. These types of installation are mutually
exclusive.

When installed for the current user, settings are saved in the HKEY_CURRENT_USER
(HKCU) registry location. Whenever this user logs onto Windows, FileLink finds the settings
saved for this user in HKCU\Software\FileLink. If another user logs on and runs FileLink,
there will be no saved settings associated with this user, and FileLink will have to configured
anew. This permits each user to have unique configuration settings for FileLink.

In most cases this is fine. In some environments, however, you may wish to have a single
configuration for all users on a given machine. In this case, settings are saved in the
HKEY_LOCAL_MACHINE (HKLM) registry location and all FileLink users share a common
configuration. This method must also be used if FileLink is to be operated as an NT service.

To accommodate both possibilities, FileLink first looks in HKEY_LOCAL_MACHINE for
configuration settings. If the settings are not found, FileLink next looks in
HKEY_CURRENT_USER.

If neither location contain FileLink configuration settings, it is likely that FileLink is being run
without having been completely installed using the InstallShield setup wizard. In this case,
FileLink automatically creates a default configuration for the current user. If the FileLink
Configurator is run first in this situation, it prompts you to create a new configuration for the
current user or for all users.

19Running FileLink

2013 Serengeti Systems Incorporated

Command Line Switches

To load FileLink, double-click on a shortcut on your Windows desktop created by the FileLink
configurator or one of the menu items that appears when clicking the Start button and
navigating to All Programs | FileLink. One or more of the following command line switches
may have been associated with FileLink during installation, or may be specified when defining
the properties of FileLink within the Target control of the Shortcut Properties dialog.

The general command line syntax is

 filelink [-d] [-gfile] [-m] [-n] [-pn] [-sfile] [-v] [&var1& | %
var2%] [-x]

The following paragraphs describe these and other command line switches in detail:

-d Debug mode

The -d switch activates the debug mode. The debug mode writes internal debug information to
the log file during script processing. This switch is only useful for diagnostics to be interpreted
by a Serengeti System technical support engineer.

-ft Accept FileLink default settings

The -ft switch may be used with the -px switch to suppress a pop-up message reminding the
user to run the FileLink configurator for the detected COM port if the port has not been
previously configured. This switch is useful in unattended environments when the default
settings are acceptable and/or when there is no user present to respond to the pop-up
message.

-g file Get import settings file

The -g switch specifies the optional settings file to be used to configure FileLink. Settings files
have an .set extension and are created by a previous run of FileLink. The settings are read
from the file and transferred to the Registry overwriting all previously existing settings. Typically
settings would only need to be imported once. Also, refer to the EXPORT and IMPORT script
commands.

-h Run hidden

The -h switch results in FileLink running completely invisible from the desktop.

-l Lock a minimized window

The -l switch may be specified with the -m switch to lock the minimized state of FileLink and
prevent a user from maximizing the window. This may be advantageous to prevent users from
having access to the console window and its associated controls. This switch is ignored if the -
m switch is not present.

-m Run minimized

20

2013 Serengeti Systems Incorporated

The -m switch results in FileLink starting with its main window minimized.

-n No splash screen

The -n switch suppresses the FileLink splash screen and other informative windows (i.e.,
information about auto-detected COM port(s), see -p switch) that may otherwise be displayed
when the program first loads.

-p n Specify COM port

The -p switch selects the COM port to be used by FileLink. FileLink may be used on a single
COM port in a given system. For example, -p2 specifies COM2. Default settings are assumed
for each COM port. If necessary, FileLink may be configured specifically for each COM port by
running FileLink configurator.

If you do not know which COM port to use ahead of time, specify -px. This option results in
FileLink scanning the PC for all available COM ports and using the first COM where a modem
is detected. If no modem is detected, then the first COM port detected is used. The default
configuration settings are used if the port found has not been previously configured. (Also see
the -ft switch.)

-s file Execute script file

The -s switch specifies the script file to be loaded and executed. Pressing the (Esc) key or
clicking the Stop button cancels script file execution.

-t [id string] Specify SrvMonitor Service Name

The -t switch specifies a service name used to identify this particular instance of FileLink to
SrvMonitor (a Windows tray applet) provided with FileLink that may be used to monitor the
operation of FileLink when it is running as an NT service or when it is running minimized. For
more information see Monitoring a FileLink Service and the SRVNAME script command.

-tl Enable TTY Terminal applet logging

The -tl switch may be helpful to Serengeti System technical support in troubleshooting problems
with terminal emulation in the TTY Terminal applet. You may be asked to add with switch to the
FileLink shortcut to produce a set of log files to be sent in for analysis.

-ua / -uc Initialize FileLink for use by All Users / Current User Only

The -ua and -uc switches are not commonly used unless FileLink is to be run on a system and
it has NOT been installed using the provided InstallShield installation program (i.e., setup.exe
). Under such circumstances, FileLink will use the specifed switch to create the appropriate
Windows registry hive (where its settings are saved) according which user(s) may use
FileLink.

-v Run as Windows service

21Running FileLink

2013 Serengeti Systems Incorporated

The -v switch should be specified whenever FileLink is started as a Windows service.

-x Run TTY Terminal applet only

The -x switch should be specified whenever the FileLink console window (and script
processor) is to be suppressed and only the TTY Terminal applet is to be visible.

&sub-parm&

 - or -

%sub-parm% Define Shortcut Target argument

Arguments delimited by & or % are assigned to internally defined script file variables %1
through %2. There can be up to nine script file variables assigned in this way. Script file
variable arguments must follow the last switch passed into FileLink as shown below.

C:\program files\fileLink.exe -n -sscript.s %var1% %var2%

22

2013 Serengeti Systems Incorporated

FileLink Console Window

The main FileLink window is shown below. There is the main menu and numerous toolbar
buttons to control the execution of your script files. Click on a menu item to explore the
FileLink menu system or click on a button to read a short description of its function.

To run an unattended session using FileLink, create a script file specific to your needs with the
FileLink Script File Editor (which can be launched directly from within FileLink). If you prefer a
different text editor, you can configure FileLink accordingly.

You may load FileLink and click the open file button to specify the script file to run. Otherwise
create a shortcut to FileLink and add the -s<file name> switch to the command line to specify
the name of your script file. Double click on the FileLink shortcut icon to run FileLink with your
script file.

Script Language

TTY Terminal Applet

CronMaker Utility

23Running FileLink

2013 Serengeti Systems Incorporated

FileLink Console Window Details

By default FileLink runs in a small window (called the console window) that allows you to type
script commands for immediate execution and control script file execution via a simple user
interface consisting of a menu bar System_Menuand series of toolbar buttons. For information
on entering commands into the console window, see Entering Commands in the Console
Window.

Text displayed in the console window may be displayed in color. The colors are keyed to the
meaning of each line of text.

Black Command echo and other information

Green Command result messages

Red Error messages and BREAK indicator

The console window menu bar is shown below.

However, FileLink is primarily operated via the toolbar buttons. These buttons provide the
controls shown below.

When FileLink is running in a window, the current COM port and script file name is displayed
as part of the program title.

24

2013 Serengeti Systems Incorporated

The bottom window pane contains the information shown below.

When FileLink is running in a window, the window remains open when script execution is
complete, unless the EXIT script command is executed. This allows you to scroll back and
view the output from the FileLink session, or to restart the script file.

See also: Using FileLink, System Menu

25Running FileLink

2013 Serengeti Systems Incorporated

File Menu

The FileLink File menu is shown below. The actions off this menu support opening and editing
script files, and saving and restoring configuration settings. Click on a menu item for
information on its function.

26

2013 Serengeti Systems Incorporated

Tools Menu

The FileLink Tools menu is shown below. The actions off this menu support running the
configurator, managing the trace window, and clearing the FileLink main window. Click on a
menu item for information on its function.

27Running FileLink

2013 Serengeti Systems Incorporated

Scripts Menu

The FileLink Scripts menu is shown below. The actions off this menu manage the running of
script files. Click on a menu item for information on its function.

28

2013 Serengeti Systems Incorporated

Applets Menu

The FileLink Applets menu is shown below. Click on a menu item for information on its
function.

29Running FileLink

2013 Serengeti Systems Incorporated

Help Menu

The FileLink Help menu is shown below. The actions off this menu support getting online help
with the operation of FileLink and script file programming, authorization and product licensing,
and contacting Serengeti Systems. Click on a menu item for information on its function.

30

2013 Serengeti Systems Incorporated

System Menu

One FileLink control is present in the System menu that drops down when you click on the
icon in the upper left corner of the FileLink window. The System menu is shown below.

The FileLink control of interest is described below.

Always On Top

Click here if you wish the FileLink window to always be visible on your screen.

31Using FileLink

2013 Serengeti Systems Incorporated

Using FileLink

Getting Online Help

Online help is available within the various components of FileLink.

FileLink Configurator

Within the FileLink Configurator, click on the Help button to view the Table of Contents of the
FileLink help file. For help on a specific file or prompt, click on the ? (question mark) in the
upper left corner of the FileLink window. The cursor changes to include a question mark. Now
to display a pop-up help window on a particular subject, position the cursor over the item and
click again.

FileLink

Within FileLink itself, click on the ? (question mark) button to view the Table of Contents of the
FileLink help file. For more specific help, highlight text (such as a script command) in the
FileLink window, and then click on the ? (question mark) button. If there is an exact match in
the help file, that information is displayed. If the exact information is not matched, the help file
index is displayed matching your highlighted text as closely as possible.

FileLink TTY Terminal Applet

Within the FileLink Terminal applet, click on the Help menu item to view the portion of the help
file related to use of this applet.

Note

If the background color of some the images in this help file are not white, then
you should change the Colors control in Control Panel Display Properties |
Settings to High Color (16 bit) or higher.

32

2013 Serengeti Systems Incorporated

Entering Commands in the Console Window

Beginning with v2.1.0, FileLink’s console window may be used interactively to enter, edit, and
execute individual script commands. The interaction of FileLink within the console window is
much like the behavior of the Windows Command Prompt window.

The console window is not intended as FileLink’s primary user interface. That remains the
FileLink script language. However, the console window is useful for typing the occasional
command and particularly for script debugging.

After entering a command and it is executed by FileLink, control returns to the console window
and you may enter another command.

33Using FileLink

2013 Serengeti Systems Incorporated

The following control keys are recognized in the FileLink console window:

F1 Display general help or help about a specific command if
pressed with the cursor over the command.

Up Arrow Move cursor off the active command line into the preceding
history region (perhaps to position the cursor over a previously
executed command so F1 can be pressed).

Down Arrow Cycle through the previous 10 commands entered if in the
active command line; move the cursor down one line if in the
history region.

Enter Execute the command if the cursor is within the active
command line; if the cursor is in the history region, reposition
the cursor to the end of command line.

Home Reposition the cursor to the beginning of the command line.

End Reposition the cursor to the end of the command line.

Backspace Erase previous character within the command line.

Left/Right Arrow Reposition the cursor left or right within the command line or
the history region.

Alt + D Clear the window.

34

2013 Serengeti Systems Incorporated

35Using FileLink

2013 Serengeti Systems Incorporated

Scheduling File Transfers With FileLink

Part of FileLink’s usefulness is derived from its ability to perform file transfers unattended at
scheduled times when running a script.

The Scheduling Script Commands

Scheduling operations within a script file are controlled by using either the PAUSE or CRON
script commands.

The PAUSE command is the simplest method and is best suited for scheduling a one-time
event. This command results in script execution being suspended for fixed period of time (e.g.,
60 minutes) or until a fixed time of day (e.g., 11PM). At the designated time, the script “wakes
up” and performs a series of tasks. If the tasks are to be repeated, the script would loop back
to the PAUSE command and wait for the next designated time to arrive.

The CRON command provides much more complex scheduling. This command allows events
like “every Tuesday and Thursday at 11PM”, “once a month at midnight of the 5th day”, “every
15 minutes on March 30”, etc., and any combination thereof to be scheduled. To make
scheduling with the CRON command more simple, FileLink includes the CronMaker
scheduling utility. With CronMaker, you build the "crontab.txt" input file to the CRON command
with a few mouse clicks. When the next CRON event triggers, the script “wakes up” and
performs a series of tasks. If the tasks are to be repeated, the script would loop back to the
CRON command and wait for the next CRON event to trigger.

Launch FileLink running a script with one or both of these commands and the scripted tasks
will occur when you want them to.

Using the CRON Command - A Brief Overview

When scheduling task(s) with CRON, there are usually three discrete components that need to
be created:

1. One or more scripts that perform the tasks you want done.
2. The event file used by the CRON command.
3. A simple “master” script which loops to execute the CRON command and to launch the script

(s) that do the work.

To schedule tasks with CRON, the following step-by-step approach is suggested.

First, create and test the script(s) needed to perform the file transfer tasks at hand. It is
important that you test that each script does what you want it to BEFORE subjecting them to a
final scheduled environment.

Next use the CronMaker utility to create or edit the event schedule. This process creates an
event file (normally named “crontab.txt” that is saved in FileLink’s program files folder). This
file is direct input for the CRON command.

To make it all work, launch FileLink with the master script. The master script executes the
CRON command which will in turn launch task specific scripts at the scheduled times and then

36

2013 Serengeti Systems Incorporated

loop back to await the occurrence of the next event.

The following is a sample master CRON script:

:loop

CRON ;; wait for scheduled event

PERFORM %nextcmd ;; launch the task script

GOTO loop ;; loop to wait for next event

There is a similar file named “CronMaster.s” provided with FileLink in the Sample Scripts
folder.

Scheduling Dependability When Running as an NT Service

This scheduling capability is further enhanced by FileLink’s ability to be installed and run as an
NT service on Windows NT, 2000, and XP machines. (NT services are not supported in
Windows 98 or ME.) When running as a service, FileLink starts when the system boots up and
remains active all the time - you don’t need to remember to start it up every day.

Installing FileLink as an NT service is easy using the provided SrvInstaller utility. To perform
scheduled operations, install FileLink as a service using a suitable script that incorporates
either or both of the PAUSE and CRON script commands.

Summary

The combination of FileLink’s scheduling and NT service capability is a powerful combination
to make sure that your file transfers take place dependability when you want them to.

37Using FileLink

2013 Serengeti Systems Incorporated

Modems and FileLink

FileLink is designed for use with AT command set modems. These are also referred to as
Hayes compatible modems.

FileLink expects modems to be in their factory default settings. The first thing to do if you are
experiencing communications problems is to make sure your modem is set for factory
defaults. See the MODEMDEFAULTS script command for more information.

If the factory settings are in place and communications problems persists, then the modem
initialization string preconfigured by the FileLink Configurator may not be correct for your
particular modem. For example, we have found that the Courier V.Everything modem requires
a different modem initialization string.

Default modem initialization string: ATW2&D2

Courier modem initialization string: AT&F1X4

Refer to your modem documentation for initialization commands or contact Serengeti Systems
technical support if you are unable to make your modem work with FileLink.

Detecting Modems

FileLink can detect a modem attached to one of the COM ports in your PC. This allows
FileLink to configure itself if it is run on a PC and the location of the modem is not known
ahead of time. This detection can take place when FileLink is initially loaded by adding the -px
switch to the program shortcut or by running the MODEMDETECT script command.

Related Command(s):MODEMCMD, MODEMRESET, DIAL, ANSWER

38

2013 Serengeti Systems Incorporated

Detecting Modems at Startup

Each instance of FileLink must be associated with an available COM port in your PC.

FileLink provides the -p shortcut switch to the purpose of specifying the associated connection
when the program starts.

In some cases, you may not know which COM port(s) are available on a given PC. FileLink
has the ability to scan the PC for COM ports and then to attempt to detect a modem on each
of the ports. This is done by specifying the -px switch.

When auto-detecting COM ports, FileLink will utilize the COM port where the first modem is
detected; if no modem is detected, FileLink will utilize the first COM port found. In all cases, if
predefined settings for the found COM port exist (previously created using the FileLink
configurator), these settings will be used, otherwise the default settings are used.

In addition, the MODEMDETECT script command is available to perform this same operating
at script execution time.

See also: Shortcut Properties Command Line Switches

39Using FileLink

2013 Serengeti Systems Incorporated

Running FileLink With Prompt.s

An alternate method to typing in commands in for FileLink to execute (rather than into the
console window) is to use the provided prompt.s script file. This script file is focused around
the PROMPT script command and effectively demonstrates its use. Using this command in a
simple script file demonstrates a scripted, prompt-driven FileLink environment.

The prompt.s script file provided with FileLink for this purpose is shown below. The following
script illustrates how FileLink can be scripted to prompt for a script command (which is saved
in the variable var) which is then provided to the PERFORM command for execution.

:top

PROMPT var /history=on
IFERROR= $ERROR_PROMPT_CANCELLED goto done

PERFORM var

GOTO top

:done

ASK "Exit FileLink?"

IFNO goto top

MESSAGEBOX "Exiting FileLink"

:exit

The prompt dialog box looks like this.

40

2013 Serengeti Systems Incorporated

Running FileLink as an Icon

FileLink runs as an icon if Run Minimized is specified in the Shortcut Properties for FileLink, if
the MINIMIZE script command is executed, or if the FileLink window is minimized manually.

When FileLink is running as an icon, the link state of the connection is included in the program
title.

The link states are:

DISCONNECTED

LINK IDLE

SENDING FILE

RECEIVING FILE

When running as an icon, FileLink terminates without any user intervention when script file
execution completes. The FileLink log file contains a history of the session if you need to
review it later.

FileLink and PGP Cryptography

FileLink incorporates the ability to encrypt and decrypt files using PGP (an acronym for Pretty
Good Privacy) cryptography and for managing PGP keyrings.

PGP is a commonly recognized method of what is referred to as strong cryptography.
Cryptography is the science of using mathematics to encrypt and decrypt data. PGP
cryptography enables you to protect sensitive information when it is stored locally or
transmitted to a remote location, so that it cannot be read by anyone except the intended
recipient.

Of course, PGP cryptography is useless if only one party uses it. To use PGP in conjunction
with FileLink, you and the remote system must be in agreement to use PGP cryptography..

In general, cryptography can be strong or weak. Cryptographic strength is measured in the
time and resources it would require to recover the original information. For all practical
purposes, using the technology available, it is impossible to an undesired recipient to decipher
the result of strong cryptography. No one can say if strong encryption will hold up under
tomorrow's computing power, but the cryptography employed by PGP is among the best
available today.

41FileLink and PGP Cryptography

2013 Serengeti Systems Incorporated

PGP Public and Private Keys

PGP utilizes public key cryptography. Public key cryptography is a scheme that uses a pair of
keys for encryption: a public key, which encrypts data, and a corresponding private, or secret
key for decryption. You provide your public key to anyone you want to share information with
while keeping your private key secret.

Anyone with a copy of your public key can then encrypt information that only you can read.
Conversely, If you have someone else’s public key, you can encrypt information that only they
can read - in other words, only the person who has the corresponding private key can decrypt
the information.

PGP, as implemented by FileLink, permits you to create keys of three different sizes
(measured in bits): 768, 1024, and 2048. Larger keys will be cryptographically secure for a
longer period of time. If what you want to encrypt needs to be hidden for many years, you
might want to use the largest key.

Keys are stored in encrypted form in files called keyrings. As you use PGP, you will typically
add the public keys of your recipients to your keyring. If you lose your keyring, you will be
unable to decrypt any information encrypted by keys on that keyring. By default, FileLink
expects keyring files to be in its current working folder.

Keys created by FileLink consist of the following user-supplied elements:

· A user name (required and at least five characters in length)
· A comment (optional and of any desired length)
· An e-mail address (optional and of any desired length)
· A passphrase (required and at least eight characters in length)

When encrypting a file, the public key of the recipient must be specified. Keys are identified by
any combination of user name, comment, and/or e-mail address. This combination is often
referred to as a key ID. These elements may be specified in part or in full. You often see a key
ID specified in the following format:

user name (comment) <e-mail address>

All that is required within a key ID is enough unique information to locate the desired key. For
example, if a key is created using a user name of Dick Tracy and there are no other keys on a
keyring with a user name containing Dick, then only the first name is required as part of the
key ID.

Important

The required key creation elements vary between PGP implementations. For
example, not all PGP keys contain a comment element. Some PGP
implementations may permit shorter user names and some may not require a
passphrase.

42

2013 Serengeti Systems Incorporated

PGP Passphrases

A passphrase is a collection of words and characters used by PGP cryptography when you
create a public/private key file set, whenever encrypted files are signed, and when files are
decrypted.

Passphrases differ from passwords only in length. Passwords are usually short -- six to ten
characters. Short passwords are acceptable for logging on to a computer system, but they are
not safe for use with encryption systems. Passphrases are usually much longer -- up to 100
characters or more. Their greater length makes passphrases more secure.

Picking a good passphrase is one of the most important things you can do to preserve the
privacy of the files you encrypt using PGP. A passphrase should be:

· Known only to you
· Long enough to be secure
· Hard to guess -- even by someone who knows you well
· Easy for you to remember and type accurately if necessary
· Use a combination of upper and lower case characters and digits (for example:
TesT03PhrasE)

Important

FileLink secures your passphrase by saving it in an encoded format in the
Windows registry along with its other settings. The passphrase is also never
displayed in the FileLink console window nor written to any log file. But be
aware that it does appear in clear-text in a script file. Therefore, the method of
specifying your passphrase during configuration is the most secure.

43FileLink and PGP Cryptography

2013 Serengeti Systems Incorporated

PGP ASCII Armoring

PGP key files and encrypted files may be saved in a format referred to as ASCII armored. This
format is an encrypted representation of a file consisting entirely of printable ASCII (or text-
mode only) characters.

Files in this format contain no binary values, and therefore may be easily sent as part of e-mail
messages and visually examined using programs like Notepad.

Files saved in this format are approximately 30% larger than their non-armored counterparts.
When decrypted, both armored and non-armored files reproduce an identical original.

44

2013 Serengeti Systems Incorporated

PGP Digital Signatures

PGP encrypted files may contain digital signatures. Digital signatures enable the recipient of a
file to verify the authenticity of the information's origin, and also verify that the information has
not been tampered with. A digital signature also prevents the sender from claiming that he or
she did not actually send the information. Therefore, A digital signature serves the same
purpose as a handwritten signature in that it attests to the contents of the information as well
as to the identity of the signer.

45FileLink and PGP Cryptography

2013 Serengeti Systems Incorporated

FileLink's Implementation of PGP

First and foremost, FileLink is a scriptable file transfer package and not a comprehensive PGP
encryption tool, but FileLink does provide the basic functionality required to utilize PGP.

FileLink is integrated with the open-source package named GnuPG from which FileLink
obtains its PGP encryption/decryption engine.

The following functionality is provided by the FileLink Configurator:

· The creation of private and public key(s) and the creation of associated
“keyrings”

· The ability to export public keys to ASCII armored and non-ASCII armored files
from a keyring to be shared with others (ASCII armored key files are plain-text
files that are easily shared via e-mail or other means; non-armored files are in a
binary format)

· The ability to import key(s) to a keyring
· The ability to delete key(s) from a keyring
· The ability to use existing FileLink or GPG keyrings

The following functionality is provided by script commands within FileLink itself:

· The ability to encrypt and optionally digitally sign files (the PGPENCRYPT
command)

· The ability to decrypt files for which you have a corresponding public key (the
PGPDECRYPT command)

· The ability to import public keys to a keyring (the PGPIMPORTcommand)

PGP has the added advantage of compression. Much like a zip file, files that are encoded
using PGP are also compressed. Of course, file(s) are expanded and restored to their original
state when they are decrypted by their intended recipient.

PGP is a complex encryption technology and the preceding paragraphs barely scratch the
surface as an introduction. If you are new to PGP specifically and public key cryptopgraphy in
general, we strongly recommend doing some independent study on the subject to make sure
that you understand the advantages and dangers associated with the encryption and
decryption of files.

Extending FileLink’s PGP Functionality

In some cases, you may be required to encrypt or decrypt a file using a GnuPG option that is
not directly implemented by FileLink. In order to do so, both the PGPENCRYPT and
PGPDECRYPT commands support the /gpgopt option which allows you to specify any
necessary GnuPG option(s). The /gpgopt option should be used by advanced users only and
FileLink interoperability with all GnuPG options is not guaranteed.

The following example encrypts a file and specifies a supported option not directly supported
by FileLink.

PGPENCRYPT "in" "out" /user="Dick" /gpgopt="--force-v3-sigs"

46

2013 Serengeti Systems Incorporated

Multiple GnuPG options may be passed using /gpgopt. When doing so, separate each
complete option with a semi-colon as shown below.

PGPENCRYPT ... /gpgopt="--force-v3-sigs;--no-verbose"

Be sure to always precede each GnuPG option with two dashes.

Troubleshooting FileLink’s PGP Functionality

For advanced troubleshooting, the PGPENCRYPT and PGPDECRYPT commands support
the /gpglog option which results in commands and responses to and from GnuPG (gpg.exe)
being written to a log file.

The following example encrypts a file and writes to a log file named “encrypt.log”.

PGPENCRYPT "in" "out" /user="Dick" /gpglog="encrypt.log"

If a fully qualified file name is not specified, the log file will be created in the current FileLink
working folder. If the file exists, it will be appended to. Delete the file before each
PGPENCRYPT or PGPDECRYPT command if you want only a single command to be logged.

The interpretation of the resulting log file is left to the user or the file may be requested by
FileLink technical support to assist you with a particular problem.

47FileLink and PGP Cryptography

2013 Serengeti Systems Incorporated

Backing Up Your Keyring File Set

It is very important that you backup your PGP keyring. If a keyring is lost or destroyed, it will no
longer be possible for you to decrypt files sent to you using any public key that you may have
distributed. And recipients of encrypted files from you will not be able to decrypt your files until
you provide them with a new public key.

A PGP keyring used by FileLink actually is a set of three files. They will reside in FileLink’s
working folder, or in a folder that you designate. The files are:

· pubring.gpg
· secring.gpg
· trustdb.gpg

To protect against loss of your encrypted data, it is vital that you make backup copies of these
files as often as you add, import, or delete keys from your keyring.

48

2013 Serengeti Systems Incorporated

Using PGP With FileLink Step-By-Step Guide

PGP setup is done using the FileLink Configurator under the Configure PGP tab.

In order to use PGP with FileLink, you must have your own PGP public/private key-pair. You
can either create a new one or you can import one.

In order to encrypt a file with FileLink, you must have imported the recipient's public key before
encryption.

In order to decrypt a file with FileLink, you must have exported your public key and sent it to
the person who will be encrypting the file before they encrypt it.

Creating a New Key-Pair

You may create a key-pair using the FileLink Configurator by following these steps:

Ø Click the 'Create Key' button.

Ø Make sure the 'Create Empty Keyring' box is not selected.

Ø You must enter a user name; an email address and/or comment field are optional.

Ø Enter the size. (default is 1024)

Ø Enter an expiration date. (default is never)

Ø Enter a Passphrase and verify it.

Ø Save the passphrase to use it without specifying it in your script (for added security).

Ø Select the folder where the keyring will be created.

Ø Click 'OK' to create the keyring and add the key-pair to this keyring.

Importing a Key-Pair

You may import a key-pair using the FileLink Configurator by following these steps:

Ø Click the 'Create Key' button.

Ø Make sure the 'Create Empty Keyring' box is selected.

Ø Select the folder where the keyring will be created.

Ø Click 'OK' to create the empty keyring.

Ø Click the 'Manage Keys' button.

Ø Click the 'Import...' button.

Ø Browse to the folder where your exported PGP keyring is located.

Ø Select the file and click 'OK'.

Ø Your key should now be imported and ready to use.

Any key from PGP Desktop (a product from PGP Corporation) must already have been
created and exported, please see the documentation for PGP Desktop for instructions on how
to create/export a key-pair using this product.

Importing a Public Key

49FileLink and PGP Cryptography

2013 Serengeti Systems Incorporated

You may import a public key using the FileLink Configurator by following these steps:

Ø Click the 'Manage Keys' button.

Ø Click the 'Import...' button.

Ø Browse to the folder where the public key file is located.

Ø Select the file and click 'OK'.

Ø The key should now be imported and ready to use.

A public key must have been exported and received in order to import the public key.

Encrypting a File

This is done using PGPENCRYPT script command. For example:

PGPENCRYPT "file_to_encrypt" "destination_encrypted_file" /
user="Recipient1"

You must have already imported the recipient's public key.

Decrypting a File

This is done using PGPDECRYPT script command. For example:

PGPDECRYPT "encrypted_file" "c:\temp\output"

You must have already exported your public key and sent it to the recipient.

Using the FileLink Configurator

The FileLink® Configurator is used to select which COM port(s) to use. You configure the
COM port for async modem connections and otherwise setup how you want to use FileLink.

The configurator is run once during installation and is accessible from a button on the FileLink
toolbar. You must run the configurator at least once before attempting to use FileLink on a
particular connection. The first time a connection is configured you are given the option to
create a Start menu shortcut and a desktop shortcut to run FileLink on this connection.

When the configurator is run from the FileLink toolbar button, any settings you change do not
take effect until a script file is executed (or unless FileLink is restarted.) For example, if you
change the baud rate and protocol while running the configurator, the FileLink status bar does
not reflect the newly defined values until you run a script file.

The FileLink Configurator is organized around six tabs. Click on the tabs for a brief description
of tab. Follow the hyperlinks below for more detailed information.

50

2013 Serengeti Systems Incorporated

File Configuration

Hardware Configuration

Modem Configuration

Terminal Configuration

Transfer Configuration

PGP Configuration Tab

51Using the FileLink Configurator

2013 Serengeti Systems Incorporated

File Configuration

When you click on the File tab the following dialog is displayed. Click on any of the controls in
the body of the dialog for more information on each configuration item contained therein.

52

2013 Serengeti Systems Incorporated

Hardware Configuration

When you click on the Hardware tab one of the following dialog is displayed corresponding to
a selection of a COM port for async file transfers. Click on any control within the body of the
dialog for more information on a particular configuration item.

Sample dialog for COM port selection:

53Using the FileLink Configurator

2013 Serengeti Systems Incorporated

Modem Configuration

When you click on the Modem tab the following dialog is displayed. Click on any of the
controls in the body of the dialog for more information on each configuration item contained
therein.

54

2013 Serengeti Systems Incorporated

Terminal Configuration

When you click on the Terminal tab the following dialog is displayed. Click on any of the
controls in the body of the dialog for more information on each configuration item contained
therein.

55Using the FileLink Configurator

2013 Serengeti Systems Incorporated

Transfer Configuration

When you click on the Transfer tab the following dialog is displayed. Click on any of the
controls in the body of the dialog for more information on each configuration item contained
therein.

56

2013 Serengeti Systems Incorporated

File Transfer Protocol Configuration

FileLink supports six different modem file transfer methods or protocols. These six protocols
are configured by clicking the Transfers tab of the FileLink Configurator.

The configuration details for each method or protocol is presented below.

ASCII Transfers

Kermit Transfers

Xmodem Transfers

Xmodem1K Transfers

Ymodem Transfers

Zmodem Transfers

57Using the FileLink Configurator

2013 Serengeti Systems Incorporated

ASCII File Transfers

There are no special configuration settings for ASCII file transfers. This type of transfer is not
block oriented, does not support binary files, and there is no error recovery. When receiving,
there is no protocol to tell when the remote system finished sending a file, so FileLink waits
approximately 10 seconds before terminating a command after at least one characters has
been received.

58

2013 Serengeti Systems Incorporated

Kermit File Transfers

Kermit is an error-correcting, block-oriented protocol. Kermit transfers start with a header block
containing file name and date-time stamp for the file, followed by the contents of the file. This
continues for as many files as the sender transmits. By default, Kermit transfers performs Run-
Length-Encoding (RLE) data compression that may reduce transmission time.

The configuration settings for this protocol in the FileLink Configurator appear below. Click on
a particular setting control for more information.

59Using the FileLink Configurator

2013 Serengeti Systems Incorporated

Xmodem File Transfers

Xmodem is an error-correcting, block-oriented protocol. The block size is 128 bytes. To use
this protocol, you must configure the COM port to use 8-data bits. By default, Xmodem uses
the 16-bit CRC block check method.

The configuration settings for this protocol in the FileLink Configurator appear below. Click on
a particular setting control for more information.

60

2013 Serengeti Systems Incorporated

Xmodem1K File Transfers

Xmodem1K is an error-correcting, block-oriented protocol. The block size is 1024 bytes. To
use this protocol, you must configure the COM port to use 8-data bits. By default, Xmodem1K
uses the 16-bit CRC block check method.

The configuration settings for this protocol in the FileLink Configurator appear below. Click on
a particular setting control for more information.

61Using the FileLink Configurator

2013 Serengeti Systems Incorporated

Ymodem File Transfers

Ymodem is an error-correcting, block-oriented protocol. Ymodem transfers start with a header
block containing file name and date-time stamp for the file, followed by the contents of the file.
This continues for as many files as the sender transmits. To use this protocol, you must
configure the COM port to use 8-data bits. By default, Ymodem uses the 16-bit CRC block
check method.

The configuration settings for this protocol in the FileLink Configurator appear below. Click on
a particular setting control for more information.

62

2013 Serengeti Systems Incorporated

Zmodem File Transfers

Zmodem is an error-correcting, block-oriented protocol. Zmodem transfers start with a header
block containing file name and date-time stamp for the file, followed by the contents of the file.
This continues for as many files as the sender transmits. To use this protocol, you must
configure the COM port to use 8-data bits. Zmodem uses the 32-bit CRC block check method
with block sizes of up to 1024 bytes.

The configuration settings for this protocol in the FileLink Configurator appear below. Click on
a particular setting control for more information.

63Using the FileLink Configurator

2013 Serengeti Systems Incorporated

PGP Configuration

When you click on the Configure PGP tab the following dialog is displayed. Click on any of the
controls in the body of the dialog for more information on each configuration item contained
therein.

64

2013 Serengeti Systems Incorporated

PGP Configuration: Create Key

When you click on the Create Key button the following dialog is displayed. This dialog has
controls that allow you to create a new PGP key in an existing FileLink or GPG keyring, or to
create a key in a new keyring. Keyring files have an extension of .gpg. (GPG is a commonly
used Open Source implementation of PGP cryptography which is utilized by FileLink.)

Click on any of the controls in the body of the dialog for more information on each
configuration item contained therein. For more information, see Using PGP With FileLink Step-
By-Step Guide.

65Using the FileLink Configurator

2013 Serengeti Systems Incorporated

PGP Configuration: Select Key

When you click on the Select Key button the following dialog is displayed. This dialog has
controls that allow you to select an existing FileLink or GPG keyring. Files with an extension of
.gpg are displayed in the file selection control. (GPG is a commonly used Open Source
implementation of PGP cryptography which is utilized by FileLink.)

PGP keys created by other PGP packages may be used, but FileLink requires you to create a
keyring and then import keys exported from these other products.

Click on any of the controls in the body of the dialog for more information on each
configuration item contained therein.

66

2013 Serengeti Systems Incorporated

PGP Configuration: Manage Keys

When you click on the Manage Keys button the following dialog is displayed. This dialog has
controls that allow you import, export, and delete keys from the current keyring. The current
keyring is either the last keyring created or the last keyring selected.

Click on any of the controls in the body of the dialog for more information on each
configuration item contained therein. For more information, Using PGP With FileLink Step-By-
Step Guide.

67Using the FileLink Configurator

2013 Serengeti Systems Incorporated

User vs. Machine Configuration

When running the FileLink Configurator, the configuration settings are saved in the Registry in
association with the current user logged into Windows. (Technical reference: the
HKEY_CURRENT_USER Registry location is used.) This permits each user to have unique
configuration setting(s) for FileLink.

In most cases this is fine. In some environments, however, you may wish to have a single
configuration for all users on a given machine. (Technical reference: the
HKEY_LOCAL_MACHINE Registry location is used.)

To accommodate both possibilities, FileLink first looks in HKEY_CURRENT_USER for
configuration settings. If the settings are not found, FileLink next looks in
HKEY_LOCAL_MACHINE.

By default the FileLink Configurator writes configuration settings to HKEY_CURRENT_USER.
To have it use HKEY_LOCAL_MACHINE, you must create a shortcut for the configurator and
add the -l switch within the Target field in the short properties dialog. When you run the
configurator by way of this shortcut, you are creating a single configuration for FileLink for all
users.

See the example below on how to create the shortcut.

68

2013 Serengeti Systems Incorporated

Using the FileLink TTY Terminal Applet

The FileLink TTY Terminal applet is a simple TTY style terminal emulator. The applet is
started by clicking on the Run TTY Terminal menu item or toolbar button, or by executing the
TERMINAL script command. You may switch freely between the TTY Terminal applet and the
FileLink script environment.

Each environment shares the same communications session, so you may connect to or
disconnect from the remote system, for example, from either a script file or from within the
TTY Terminal applet. The same set of configuration settings apply to both environments.

The TTY Terminal applet is useful to understand how a communications session with a
particular remote system takes place so that it can be automated with a script file.

The TTY Terminal applet is menu-driven. The menus are organized as follows:

TTY Terminal Connection Menu

TTY Terminal Settings Menu

TTY Terminal File Transfer Menu

TTY Terminal Help Menu

69Using the FileLink TTY Terminal Applet

2013 Serengeti Systems Incorporated

Terminal Connection Menu

The Terminal Connection menu is shown below. The actions off this menu support opening
and closing the configured COM port, and permit exiting back to the FileLink main window.
Click on a menu item for information on its function.

70

2013 Serengeti Systems Incorporated

Terminal Settings Menu

The Terminal Settings menu is shown below. The actions off this menu support changing the
current COM port, changing some of the settings of the COM port and the Terminal
environment (baud rate, parity, line wrapping, etc.), and changing the Terminal type (e.g.,
ANSI, DEC, Wyse, etc.), screen size, fonts, and colors. Click on a menu item for information
on its function.

71Using the FileLink TTY Terminal Applet

2013 Serengeti Systems Incorporated

Terminal File Transfer Menu

The Terminal File Transfer menu is shown below. The actions off this menu support the
selection of a file transfer protocol and then subsequently the sending or receiving of one or
more files. Click on a menu item for information on its function.

72

2013 Serengeti Systems Incorporated

Termnal Help Menu

The Terminal Help menu is shown below.

The FileLink Script File Editor

The FileLink script file editor is a specially designed text editor for editing FileLink script files.
The editor provides for the easiest possible creation and maintenance of script files. Major
features include:

Ø Context sensitive help for all FileLink script commands

Ø Color syntax highlighting of FileLink script commands

Ø Automatically capitalize FileLink script commands as you type

Ø Edit multiple script files and save (and reload) all at once as a “session”

Ø Find in files function that automatically searches script files (files with .s extension)

Ø Optional tabbed interface when editing multiple files

Ø Optional line numbers

This is the FileLink editor main screen:

73The FileLink Script File Editor

2013 Serengeti Systems Incorporated

FileLink script command syntax is highlighted in color as shown below:

Blue Script commands

Violet Script command options (e.g., /append); command operators (e.
g., &)

Black Variables and strings

Green Comments

Red Predefined error variables (e.g., $ERROR_SUCCESS); numeric
constants (e.g., NATO 30)

Bold Black Script labels

The editor is launched from a FileLink menu or the toolbar and automatically opens the
currently active script file.

Script Programming

To accommodate automated and unattended operations it is designed for, FileLink provides a
powerful script language. See Script Language Features.

Script files can be executed directly from a FileLink shortcut on the desktop or when selected
interactively while FileLink is running .

Script files are normally produced with the FileLink Script File Editor . FileLink has toolbar
buttons to launch the editor (or other editor of choice) for this purpose. Unless otherwise
specified, script files are assumed to have an extension of .s.

See also: Script File Commands, Sample Script Files

74

2013 Serengeti Systems Incorporated

75Script Programming

2013 Serengeti Systems Incorporated

Script File Command Arguments

Script commands consist of an opcode followed by one or more arguments. An argument falls
in one of the following types.

· an alpha-numeric string (enclosed in single or double quotes)

· a variable (names starting with alphabetic character, %, or $ symbol)

· a command option (starting with / symbol)

· a numeric value

See also: Script Language Features, Script Commands

76

2013 Serengeti Systems Incorporated

Script File Alphanumeric Constants

Alphanumeric constants define file names and other character strings that may be used in
script commands directly or assigned to script variables. Alphanumeric constants are always
enclosed by single or double quotation marks. Examples of alphanumeric constants are:

SENDFILE ’c:\My Data\Update Inventory.dbf’

COPY "file2" "file1"

SET filename = "filepath"

Whenever you are using a file name in a constant or variable, FileLink always assumes the file
is located in the working folder. If you want to reference a file elsewhere, you should always
use the file’s full path name.

77Script Programming

2013 Serengeti Systems Incorporated

Script File Numeric Constants

Numeric constants may be used in appropriate script commands or assigned to script
variables. Numeric constants differ from alphanumeric constants in that the enclosing single or
double quotation marks are optional. Examples of numeric constants are:

SETNUM x = 1

SETNUM y = "2" ;; same as y = 2

NATO 60

78

2013 Serengeti Systems Incorporated

Script File Variables

Variable arguments are internally or user defined string or numeric values that may be used in
script commands where an alphanumeric or numeric value is expected. Variables may be
created and assigned a value by using the SET or SETNUM script commands, or are
automatically created and assigned a value by the FileLink script processor when used in
certain script commands.

Script variables begin with at least one alphabetic character and may be up to 255 characters
in length. Variables are not case sensitive. For example, $abc and $ABC are the same
variable. Up to 4096 variables may be assigned at one time.

Once a variable is assigned, it remains defined for the duration of an active script file or until it
is unassigned with the SET command. The values assigned to script variables may be up to
1020 characters in length. Examples of alphanumeric variables are shown below:

SETSET phone_number = "555-1212"

DIAL phone_number

SETSET file name = "c:\anyfile"

DELETE filename

FileLink script files may perform substring manipulation on variables. The SETEXTRACT,
SETLEFT, SETMID, SETRIGHT, and SETSUBSTR commands allow extraction of a delimited
substring, substrings from the left to right from mid string, right to left, and to finder the
occurences of a substring respectively.

FileLink script files may also perform basic arithmetic manipulation on numeric variables. The
INC and DEC commands allow incrementing and decrementing of numeric strings while the
SETNUM command permits adding, subtracting, multiplication, and division. Examples of
numeric variables are shown below:

SETNUM x = 1SET

SETNUM e = m x c x c ;; (hint: e = mc2)

INC x

There are a number of internal script variables assigned by FileLink to make your script
development easier and more powerful. These are described their own Internal Script
Variables section.

See also: Using Shortcut Target Arguments in Script Files

79Script Programming

2013 Serengeti Systems Incorporated

Script File Command Options

Command options may be present on certain script file commands following the opcode and
any arguments that may be required. Options always begin with the / symbol and must not
contain any embedded spaces. For instance, in an option such as /baudrate=9600, you must
not put spaces on either side of the equal sign. Many commands support multiple options.
Examples of command options are below:

RCVFILE /flush /timeout=0

PROTOCOL "xmodem" /use_checksum

USEPORT "COM1" /baudrate=9600 /parity=none /stopbits=1

80

2013 Serengeti Systems Incorporated

Labels in Script Files

To facilitate conditional and unconditional branching in FileLink script files, a label is used to
define the destination of a branch. Labels always begin with a colon, must not exceed 32
characters in length, and may appear anywhere within a line. FileLink supports up to a total of
320 unique labels at once.

Consider the following example of a valid label.

:top

Refer to LOOPTO, GOTO, LOOPIF, and IFERROR for more details.

81Script Programming

2013 Serengeti Systems Incorporated

Comments in Script Files

Either a semi-colon or an asterisk may be used to denote the beginning of comment in a
FileLink script file. A comment may be a separate line unto itself or be on the same line as a
command.

Consider the following examples of valid script file comments.

; Connect with the remote system

CONNECT

* this is a comment line *

LINEOUT "hello world"

DIAL "555-1212" ;; connect with directory assistance?

82

2013 Serengeti Systems Incorporated

Debugging Script Files

FileLink provides several commands to specifically facilitate the debugging of script files.
These commands are:

BREAK - Set a script file breakpoint

GO - (Re)run the currently selected script file from beginning

RESUME - Resume execution of a script file stopped at a breakpoint

STOP - Exit from the break state

There is also a control named Enable Breakpoints under the Scripts menu which controls
whether or not BREAK command(s) are recognized when a script is running.

When debugging, place the BREAK command at strategic places in the flow of execution of a
script file to be debugged. When the FileLink script processor encounters a BREAK, script
execution will be suspended.

FileLink is now in the break state and control is returned to the console window. Here you can
view variable values, for example, by typing DISPLAY commands into the console command
line, reassign variable values by typing SET or SETNUM, or perform other tasks that may
assist you in finding problems in your script logic.

Script execution may be resumed by typing the RESUME command into the console
command line or by clicking the Skip To Next Command (Ctrl + N) toolbar button. The script
may be stopped by typing the STOP command or by clicking the Stop toolbar button. To
restart the script (perhaps after editing it to make corrections), type the GO command or click
the Rerun Script File (Ctrl + R) toolbar button.

When your script has been thoroughly debugged, either edit your script and remove all the
BREAK commands or clear the Enable Breakpoints control in the Scripts menu and BREAK
commands will be ignored on subsequent runs of the script.

83Script Programming

2013 Serengeti Systems Incorporated

Using Variables in Command Options

FileLink script command options may not be specified using variables directly. The following is
an example of a script command with an option:

USEPORT /parity=none

In this case none is a literal string (without quotation marks) and it cannot be replaced with a
variable. However, there is an indirect way that this can be done. This involves the building of a
complete command in a variable and using the PERFORM script command to run it.

For example, let's assume that you wish to set some COM port parameters that are not known
until the script is run. The command might look like the following:

USEPORT /baudrate=9600 /parity=none

Say that the script prompts the user for the baudrate and parity settings and these are
assigned to script variables baud and par. You might be inclined to try something like:

USEPORT /baudrate=baud /parity=par ;;Wrong!

This will result in wrong baud rate and parity values (the variable names, not their values)
being provided to the USEPORT command. The supported method would be:

SET cmd = "USEPORT /baudrate=" & baud & " /parity=" & par

PERFORM cmd

In another example, let's assume that you wish to control the reading of text file using the
READFILE command with /record option, but the record number varies and you wish to use a
variable to specify which record to read. Normally the command would look something like the
following:

READFILE "datafile" datarecord /record=1

The /record option accepts a numeric constant only. Using a variable, you would like do
something like:

SETNUM rec = 10

READFILE "datafile" datarecord /record=rec ;;WRONG!!

The supported method is:

SET file = "datafile"

SETNUM rec = 10

SET cmd = "READFILE " & file & " /record=" & rec

PERFORM cmd

84

2013 Serengeti Systems Incorporated

This method may be used on any FileLink script command that uses options.

85Script Programming

2013 Serengeti Systems Incorporated

Using Functions

Functions are a handy way to a re-use a sequence of commands that may be otherwise be
repeated in a script file. Like functions or subroutines in other programming environments,
FileLink script file functions make script development easier and results in more easily read
and maintained scripts.

A script may define up to 256 unique functions. Functions may call other functions but the
nesting depth of embedded functions is limited to 32 calls. Functions may not be called
recursively (i.e., a function cannot call itself).

Functions must be declared before they can be used. FileLink provides two script directives to
create what is referred to as a function declaration section within a script file. This section must
be at the top of the script file. It must also be in the main script which is to say a function
declaration section cannot be in a script that is invoked by way of a CALL script command.

;; an example function declaration section

BEGINFUNCTIONS

;; function(s) are defined here

ENDFUNCTIONS

Functions are defined within the function declaration section in the following manner.

;; an example function

FUNCTION MyFunction

;; function body is here

ENDFUNCTION

Putting it all together.

;; an example function declaration section

BEGINFUNCTIONS

;; function(s) are defined here

;; an example function

FUNCTION MyFunction

;; function body is here

ENDFUNCTION

ENDFUNCTIONS

There can be multiple functions.

;; an example function declaration section

BEGINFUNCTIONS

;; function(s) are defined here

;; example function #1

FUNCTION MyFunction1

;; function body is here

86

2013 Serengeti Systems Incorporated

ENDFUNCTION

;; example function #2

FUNCTION MyFunction2

;; function body is here

ENDFUNCTION

ENDFUNCTIONS

Calling a function is accomplished by simply using the function name as a command in the
script file. The following calls the two functions declared above.

;; call my functions

MyFunction1

MyFunction2

Up to nine arguments may be passed to a function. The function must be declared showing
the arguments and then called with the corresponding number of arguments.

;; an example function with two arguments

FUNCTION MyFunction arg1 arg2

;; function body is here

ENDFUNCTION

;; how to call the function with two arguments

SET var = "I am an argument"

MyFunction var "b"

Because functions are global, they are accessible from the main script and any script that are
invoked with CALL or CHAIN script commands. They are also persistent which is to say they
remain defined after a script terminates. It is possible to define functions in one script file and
then call those functions when running other script file(s).

All variables in the FileLink script environment are global. FileLink functions support
arguments. The variables that are created in association with function arguments are also
global. This is demonstrated with the following script where both DISPLAY commands show
the same value "a".

;; declare our function

BEGINFUNCTIONS

FUNCTION MyFunction arg1

DISPLAY arg1

ENDFUNCTION

ENDFUNCTIONS

;; script execution begin here

MyFunction "a"

DISPLAY arg1

STOP

Pay close attention to variables used in a script and make certain that uniquely named

87Script Programming

2013 Serengeti Systems Incorporated

variables are used whenever appropriate.

All of the previous examples show a single return point from a function. Specifically, all of the
preceding functions return when there are no more command(s) in the function to perform.
Multiple return points are possible in more complex scripts by using the RETURN script
command.

;; declare our function

BEGINFUNCTIONS

FUNCTION MyFunction arg1

;; complicated operations

GOTO more todo

RETURN

: more todo

;; more complicated operations

RETURN

ENDFUNCTION

ENDFUNCTIONS

The RETURN statement is not always required. In the preceding function, the second
RETURN statement is redundant. The script could be written as shown below.

;; declare our function

BEGINFUNCTIONS

FUNCTION MyFunction arg1

;; complicated operations

GOTO more todo

RETURN

: more todo

;; more complicated operations

ENDFUNCTION

ENDFUNCTIONS

In this case, the ENDFUNCTION directive is recognized as the end of the MyFunction function
so the RETURN command is implied.

Finally, the RETURN statement allows for a numeric return code to be passed back. Upon
return to the calling script, the return code may be tested using the IFERROR script
commands and is saved in the %lasterror variable. The following example shows how
different return points from a function may be indicated to the calling script.

;; declare our function

BEGINFUNCTIONS

FUNCTION MyFunction arg1

;; complicated operations

GOTO more todo

RETURN 1

: more todo

88

2013 Serengeti Systems Incorporated

;; more complicated operations

RETURN 2

ENDFUNCTION

ENDFUNCTIONS

Testing a return code would look something like this.

;; call my functions

MyFunction1

IFERROR= 1 GOTO from_Return1

IFERROR= 2 GOTO from_Return2

89Script Programming

2013 Serengeti Systems Incorporated

Performing Variable Arithmetic and Numeric Comparisons

FileLink variables are always represented internally as string values. However, numeric
operations can be performed on variables and strings as long as they contain only numeric (e.
g., digits 0 - 9) values, or on numeric constants.

Numeric variables may be created using the SET or SETNUM command as shown below.
When initializing variables, the only difference between SET and SETNUM is that SETNUM
verifies that the variable is being set to a numeric value. Any previous value in the variable,
regardless if it numeric or non-numeric, is discarded.

SET x = "100"

SETNUM x = 100

Numeric variables may be incremented and decremented using the INC and DEC commands
as shown below.

INC x

DEC x

Basic integer arithmetic may also be performed on numeric variables using the SETNUM
command. This command allows for addition, subtraction, multiplication, and division to be
performed on two variables and/or numeric string constants as shown in the various
statements below.

SETNUMSETNUM a = 100

SETNUMSETNUM x = a + a ;; addition

SETNUMSETNUM x = a – 100 ;; subtraction

SETNUMSETNUM x = 100 x a ;; multiplication

SETNUMSETNUM x = a / 100 ;; division

Numeric variables may be compared using one of the IFNUM commands as shown below.

IFNUM x 100 goto vars_equal

IFNUM< x 101 goto var_less_than

IFNUM> x 99 goto var_greater_than

IFNUM< x 101 goto var_less_than_or_equal

IFNUM> x 99 goto var_greater_than_or_equal

IFNUM! x 99 goto vars_not_equal

90

2013 Serengeti Systems Incorporated

Performing Date Arithmetic

Various dates are saved in internal FileLink script variables. For example, the current date is
always saved in the %date variable.

FileLink provides two script commands, DATEADD and DATESUB, that allow variables
containing a date (i.e., any string in the format mm-dd-yy or mm/dd/yy) to be manipulated by
adding or substracting a specified number of days.

See also: Using the %date, %datetime, and %time Variables

91Script Programming

2013 Serengeti Systems Incorporated

Controlling Script Command Logging

Two different options are supported to suppress the echoing of script commands to both the
console window and the log file. One option suppresses the command and any result message
(s) while another suppresses the command echo but permits result message(s) to appear.

Begin a script command with an "at" symbol to completely suppress the command and its
result message(s).

; Dial the remote system but suppress all output

@DIAL remote_number

Begin a command with an exclamation point to suppress the command from being echoed but
permit any result message(s) to be logged.

; Issue command but do not echo

!PERFORM cmd

92

2013 Serengeti Systems Incorporated

Scheduling Script Operation

FileLink provides two build-in methods to schedule when certain operations are performed.
Simple daily scheduling is provided by the PAUSE command. More complex scheduling is
provided by the CRON command. In some cases, the commands may be used together.

Simple scheduling amounts to delaying the execution of script commands for a specified
period of time or until a specified time of day. For example, the following script command
delays script execution until 2:00AM.

PAUSE /until=2:00

More advanced scheduling enables scripts to be run at on certain days of the week, days of
the month, and/or at various times of day. The CRON command is used to this purpose. The
CRON command utilizes predefined scheduling conditions (e.g., @daily) or a file (named
"crontab.txt") that allows for multiple scheduling conditions. For example, the following script
command runs a specified script file at midnight each night.

CRON "@daily" 'CALL "nightly.s"'

It is also possible to use the PAUSE and CRON commands together to achieve some of the
same results. For example, since the @daily condition becomes active at midnight, you might
want to have the script become active at 1:30AM instead of at midnight. To accomplish this,
you could use the following script commands.

CRON "@daily"

PAUSE /until=1:30

CALL "nightly.s"

More complex scheduling is possible using the CRON script command in conjunction with the
“crontab.txt” file. The format of this file is complex and not something the casual user needs to
be concerned with. The CronMaker utility is provided with FileLink for the direct creation and
modification of “crontab.txt” files.

Refer to CRON and PAUSE for more details.

93Script Programming

2013 Serengeti Systems Incorporated

Sending and Receiving E-mail in Script Files

FileLink is e-mail enabled. E-mail messages are composed and sent within a script using the
CREATEMAIL and SENDMAIL script commands. E-mail messages are received using the
GETMAIL command.

For FileLink e-mail to work, the PC must have an established network connection. To send e-
mail, the PC must have access to an SMTP server. To receive e-mail, the PC must have
access to a POP3 server. In both cases, the server name or IP address and any appropriate
log on ID and password must be known when the script runs.

These commands work independently of any e-mail client that you may have installed on your
PC. When receiving messages, FileLink can simply get the get next message available on the
server, or search the subject line of all pending messages for specific value and only get this
one message.

Messages received may be viewed and/or saved to a file. Optionally, messages may be left on
the server. The subject line of the message is saved in a script variable for additional
processing during script execution if necessary.

Listed below are some examples of how e-mail functionality may be utilized in FileLink scripts:

Ø Send a message to acknowledge a successful file download (or upload)

Ø Wait for an e-mail message to be received before initiating a file transfer

Ø E-mail a file as soon as it appears in a local folder (or in a server directory)

Ø Send an e-mail from anywhere to initiate a file transfer

Ø Send an e-mail from anywhere to instruct FileLink to execute a specific script file

Refer to CREATEMAIL, SENDMAIL, and GETMAIL for more details.

94

2013 Serengeti Systems Incorporated

Using Shortcut Target Arguments in Script Files

FileLink permits arguments defined on a Shortcut Target line to be passed in at load time to be
used as script file variables. Up to nine arguments are supported. There are nine internally
defined variables, %1 through %9, dedicated for this purpose

On the Target line an argument is delimited by either & or %. The following are example
arguments:

&argument&

%different argument%

The first argument, reading left to right, is assigned to variable %1, the second argument is
assigned to %2, and so on. For example, consider the following Shortcut Target command
line.

"filelink.exe" &"1-512-555-1212"& &SENDFILE "newdata"&

With such a Target line, the following script file:

DIAL %1

PERFORM %2

DISCONNECT

EXIT

would be executed as if it was originally written as:

DIAL "1-512-555-1212"

SENDFILE "newdata"

DISCONNECT

EXIT

95Script Programming

2013 Serengeti Systems Incorporated

Authorizing Remote Users in TTY Mode

FileLink provides script commands to authorize remote users by way of a user name and an
optional password. Up to two additional pieces of information about each user is also available
within the FileLink script environment.

Authorization is provided using the AUTHUSER, AUTHPW, and AUTHDATA script
commands. A specially prepared text file, called an authorization file, contains all information
necessary to support these three script commands. For more information on how to create an
authorization file, see Authorization File Format.

Authorization would be used when FileLink is acting as a host for remote users in an
asynchronous modem protocol file transfer environment. For example, a script file would be
prompting the remote user (using the LINEOUT command) for a user name (receiving the
response with the LINEIN command), and verifying the response with the AUTHUSER
command.

The same sequence could be repeated for a password but the AUTHPW command would be
used to match the password with a specific user name.

The AUTHDATA command could be used to obtain information specific to a user such as the
user's home directory, a dial back telephone number, a greeting, or any other string data that
might be necessary to support a remote user. The authorization file provides for two separate
pieces of information.

This method is not a particularly secure way to perform user authorization since the user
names and passwords are saved in clear text in a simple text file -- if a more secure method is
required then running an external user-written program by way of the EXEC script command is
recommended.

See the sample script in Dial-In Connection With Authorization.

96

2013 Serengeti Systems Incorporated

Authorization File Format

An authorization file contains a list of user names and passwords plus up to two optional data
fields which are accessed via the AUTHUSER, AUTHPW, and AUTHDATA script commands.

Each line of the file contains up to four comma-delimited fields. The format of the file is:

<user name>,<password>,<data>,<data>

Blank lines, leading spaces, and tabs are ignored. Lines whose first non-space character is a
pound-sign (#) are comments and are ignored. Commas may not appear within any of the
fields -- they are delimiters only.

This file is simple text and may be created with the FileLink Script File Editor or any text editor.
The default authorization file name used by FileLink is "authorization.txt" but you may specify
a different file name in any of the authorization commands.

Consider the following example where three user name and passwords have been allowed for.
In this example, the first data field is the home directory of the particular user and the second
data field is a unique greeting to be sent to the user. Note that the data fields are optional and
the last entry does not contain a greeting.

daily dial in authorization file

<user name>,<password>,<home directory>,<greeting>

robtjones,lillypad,\users\robtjones,Good morning Robert

stanman,museum,\users\stanford ind,Thanks for your business

cindyc,ad67d338,\users\cindyc

Note that the passwords are stored in clear text in the authorization file. Obviously, this is not
a completely secure method of user authorization -- if a more secure method of authorization
is desired then an external user-written program run with the EXEC script command is
recommended.

Internal Script Variables

FileLink maintains a set of internally defined variables. These variables always begin with the
% or $ symbol. You may use these variables just as you would any user variable, but assigning
values to these variables using the SETSET or SETNUM commands is not recommended.

%currentlocaldir Contains the current local working folder (directory)

%datetime Contains a formatted date/time string (i.e., Sat Feb 17
11.00.22 2006)

%dbrawqueryresult Contains the raw SQL query result if the
DBGETRESULTS command does not recognize or
cannot parse the result into individual %db_xxxx
variables.

%dbqueryrows Contains the number of rows returned on the most recent
DBQUERY command SQL database query

97Internal Script Variables

2013 Serengeti Systems Incorporated

%dbqueryvariables Contains the number of variables created during the most
recent DBGETRESULTS command

%difffileid Contains a numeric representation of the type of
difference found on the most recent run of the GETDIFF
command

%difffilename Contains the name of a file where a difference has been
found on the most recent run of the GETDIFF command

%difffilepath Contains the full path a file where a difference has been
found on the most recent run of the GETDIFF command

%difffiles Contains the number of file differences found on the most
recent run of the DIFF command

%difffiletext Contains a text description of the type of difference found
on the most recent run of the GETDIFF command

%diffnum Contains the sequence number of the file difference
returned on the most recent run of the GETDIFF
command

%lasterror Error or result code returned by the last script command
run

%lasterrormsg Descriptive text of error returned by the last script
command run

%newport New port number set by MODEMDETECT script
command

%nextcmd Character string obtained by CRON command

%nextfile File name obtained by GETNEXTFILE command

%nextfiledate File date obtained by GETNEXTFILE command

%nextfiledatetime File date/time stamp obtained by GETNEXTFILE
command

%nextfilesize File size (in bytes) obtained by GETNEXTFILE command

%nextfiletime File time stamp obtained by GETNEXTFILE command

%nextfolder Optional folder name obtained by GETNEXTFILE
command

%nextpath Full path name obtained by GETNEXTFILE command

%port Contains the current COM port

%rcvfilecount Contains the number of files received by last RCVFILE
command

%sendfilecount Contains the number of files sent by last SENDFILE
command

%snapshotfiles Contains the number of files examined during the most
recent run of the SNAPSHOT command

%time Contains the current system time (i.e., 11.00.22)

%timedate Same as %datetime

%unzipcount Contains the number of files unzipped during the
previous UNZIP command

%zipcount Contains the number of files zipped during the previous
ZIP command

$ERROR_nn Predefined $ERROR constants for use with the
IFERROR command

%1 - %9 Variables assigned from Shortcut Target arguments

98

2013 Serengeti Systems Incorporated

Consider the following examples in which the use of an internal variable is shown.

GETNEXTFILE

MESSAGEBOX %nextfile "Last file name received was:"

;; create a directory using current date and time

MAKEDIR %datetime

Details on internal script variable usage follows in additional sections.

99Internal Script Variables

2013 Serengeti Systems Incorporated

Using the %cr, %crlf, and %lf Variables

When concatenating strings using the SET script command, the %cr, %crlf, and %lf variables
may be used to add carriage control to a string.

For example, the following command builds a two line string.

SET my_var "line #1" & %crlf & "line #2"

100

2013 Serengeti Systems Incorporated

Using the %currentlocaldir Variable

The current local working folder (or directory) is maintained in an internal variable named %
currentlocaldir.

WORKINGDIR "c:\temp"

DISPLAY %currentlocaldir

Whenever changing the working folder in script functions or called scripts, it is recommended
that the original folder always be restored prior to returning as shown in the following sample
code.

FUNCTION things todo

;; save current working folder

SET savdir = %currentlocaldir

;; do whatever...

WORKINGDIR "c:\temp"

;; ...

;; restore working folder

WORKINGDIR savdir

RETURN

101Internal Script Variables

2013 Serengeti Systems Incorporated

Using the %date, and %datetime, and %time Variables

These variables contain the current system date and time.

The %date variable contains the current system date in the form mm-dd-yy (i.e., 02-16-01).
Note: the more common mm/dd/yy (i.e. 02/16/01) form is not used so that the %date variable
may be used to name files.

The %datetime variable contains a formatted date and time string (i.e., Sat Feb 17 11.00.22
2001). Alternate variable %timedate is also accepted.

The %time variable contains the current system time in the form hh.mm.ss (i.e., 11.00.22).
Note: the more common hh:mm:ss (i.e. 11:00:22) form is not used so that the %time variable
may be used to name files.

Consider the following example where a file name is created using the current time in order to
make it unique. The resulting file name would be something like: c:\data\file.11.00.22.

SET $rcvfile = "C:\data\file."

SET $rcvfile &= %time

Consider the following example where a unique directory is created beneath the FileLink
current working folder.

MAKEDIR %datetime

102

2013 Serengeti Systems Incorporated

Using the %dbqueryrawresult, %dbqueryrows and %dbqueryvariables
Variables

These three variables are set by the DBGETRESULTS, DBQUERY, and DBGETRESULTS
script commands respectively.

The %dbqueryrawresult variable contains a raw text string resulting from a SQL query
submitted by the DBQUERY that cannot be parsed into individual %db_xxxx variables by a
subsequent DBGETRESULTS command. Normally this variable is reserved for
troubleshooting purposes and is only assigned in the event of an error during the execution of
DBGETRESULTS.

The %dbqueryrows variable contains the number of rows resulting from a SQL query
submitted by the DBQUERY script command. A maximum of 1000 rows is allowed on any
single query before an error occurs.

The %dbqueryvariables variable contains the number of individual %db_xxxx variables
created by the DBGETRESULTS command when parsing the result of a single SQL query
submitted by the DBQUERY script command.

103Internal Script Variables

2013 Serengeti Systems Incorporated

Using the %difffileid, %difffilename, and %difffiletext Variables

These variables are set as a result of running the GETDIFF script command when a difference
is detected with a file in the local PC file system. GETDIFF is used after running the DIFF
script command which compares baseline information obtained about the file system (using
the SNAPSHOT script command) with the current state of files within the file system.

The %difffilepath variable contains the full path name of a changed file and %difffilename
just the file name itself.

The %difffileid and %difffiletext variables contain information about how the file has changed
in numeric and text formats, respectively.

Possible values for %difffileid are:

5001 = $DIFF_FILE_NOT_FOUND
5002 = $DIFF_FILE_IS_NEW
5003 = $DIFF_FILE_SIZE
5004 = $DIFF_FILE_DATETTIME

Possible values for %difffiletext are:

** File not found
** File is new
** File size has changed
** File date/time stamp has changed

Consider the following example where only files that have a different size are of interest.

DIFF

:loop

GETDIFF

IFERROR $ERROR_READ_EOF GOTO done

IFNUM! %SETdifffileid $DIFF_FILE_SIZE GOTO loop

MESSAGEBOX %difffilename "Size of this file has changed."

GOTO loop

:done

104

2013 Serengeti Systems Incorporated

Using the %difffiles and %diffnum Variables

These variables are set by the DIFF and GETDIFF script commands respectively.

The %difffiles variable contains the total number of different files that the DIFF command
detects when scanning the local PC file system within the folder and subfolders (if any)
specified.

The %diffnum variable contains the sequential number of a given file returned by the
GETDIFF command.

Used together, it is possible to use these variables to know how many more differences there
may be when performing a script loop calling GETDIFF to identify multiple differences.

More specifically, %diffnum = %difffiles after GETDIFF has been issued a sufficient number
of times to find all the currently identified differences detected by the most recent DIFF
command.

105Internal Script Variables

2013 Serengeti Systems Incorporated

Using the %lasterror Variable

The %lasterror variable is initialized to the last error or completion code of the most recently
completed script command.

The following console window excerpt demonstrates one use of this variable.

Line 5: RCVFILE "does_not_exist"

*550 Requested action not taken. File unavailable

*File receive operation failed. [1059]

Line 6: DISPLAY %lasterror

%lasterror = 1059

106

2013 Serengeti Systems Incorporated

Using the %lasterrormsg Variable

The %lasterrormsg variable is initialized to a text description of the last error of the most
recently completed script command. This message is the same as what appears in the script
log.

The following console window excerpt demonstrates one use of this variable.

Line 5: RCVFILE "does_not_exist"

*550 Requested action not taken. File unavailable

*File receive operation failed. [1059]

Line 6: DISPLAY %lasterrormsg

%lasterrormsg = *File receive operation failed

107Internal Script Variables

2013 Serengeti Systems Incorporated

Using the %lastfile and %lastpath Variables

Several of the file transfer protocols supported by FileLink, i.e., Zmodem, permit the remote
system to supply the name of a file when it is received by FileLink. FileLink does provide a
mechanism to override this remotely defined name, but when this is not used, you may use
the %lastfile or %lastpath variables if you need to perform some operation on the file within a
script file.

These internal script variables are replaced the file name or by the path and file name of the
last file received by FileLink. If no file has been received, %lastfile and %lastpath are empty
strings.

For example, consider the following script example where FileLink is waiting for the remote
system to send a file named June Inventory.rpt.

PROTOCOL "zmodem"

:again

RCVFILE /timeout=0

IFSTRCMP %lastfile "June Inventory.rpt" goto got_it

MESSAGEBOX "Did not receive correct file"

GOTO again

:got_it

MESSAGEBOX "Inventory report received"

108

2013 Serengeti Systems Incorporated

Using the %nextcmd Variable

The %nextcmd variable is used in conjunction with the CRON script command. The operation
to be performed, if any, whenever a scheduling condition is matched, is saved in this variable.

Consider the following example in which the CRON command is used to awaken FileLink once
an hour to execute the hourly.s script file.

:loop

;; note the use of both single and double quotation marks

CRON "@hourly" 'CALL "hourly.s"'

PERFORM %nextcmd

GOTO loop

See the description of the CRON command for information on scheduling FileLink operations.

109Internal Script Variables

2013 Serengeti Systems Incorporated

Using the %newport Variable

The %newport variable is initialized when the MODEMDETECT script command has
executed successfully.

The variable is set to either the first COM (e.g., COM1 to COM48) where a modem was
detected; the first COM port detected in the system if no modem is detected and the /
firstportok option is specified; or a null string if no COM ports are detected or if no modem is
detected and the /firstportok option is not specifed.

The following example shows how to set FileLink to use a COM port where a modem has
been detected.

MODEMDETECT

IFERROR $ERROR_NO_MODEMS_DETECTED goto no_modems

USEPORT %newport

110

2013 Serengeti Systems Incorporated

Using the %nextfile, %nextpath, and %nextfolder Variables

Under some circumstances you may need to have FileLink send one or more files where you
do not know the file name in advance. There may also be times when a local directory
structure is unknown and you wish to obtain names of subfolders.

FileLink provides GETNEXTFILE command expressly to support the “hot send” feature. The %
nextfile and %nextpath variables, and optionally the %nextfolder variable, are used in
conjunction with this command. The first two internal script variables are replaced by the file
name and the path and file name, respectively, of the file obtained by the GETNEXTFILE
command. If no file has been found, %nextfile and %nextpath are empty strings.

In addition, there are options to this command to get the newest or oldest file present.

Consider the following example in which FileLink monitors a specific directory named c:\File
Uploads for the presence any file with an extension of .upload. When a file is found, FileLink
dials the remote system and sends it.

WORKINGDIR "c:\File Uploads"

:loop

GETNEXTFILE "*.upload" /timeout=0

DIAL "555-1212"

SENDFILE %nextfile

DISCONNECT

GOTO loop

Optionally, the GETNEXTFILE command can be instructed to return local subfolder names
along with any other files that may be present. In this case, when a folder is found its name is
returned in the %nextfolder variable and the %nextfile variable is set to an empty string. In
this case, the %nextpath variable contains the complete path name of the folder.

Refer to GETNEXTFILE for more details.

111Internal Script Variables

2013 Serengeti Systems Incorporated

Using the %nextfiledate, %nextfiledatetime, and %nextfiletime Variables

The %nextfiledate, %nextfiledatetime, %nextfilesize, and %nextfiletime variables are
initialized to the file date, file time, and/or file size of the last local file or folder returned by the
GETNEXTFILE script command. (%nextfilesize is not meaningful if a folder is returned.)

The format of the date and time are the same as the %date, %datetime, and %time variables,
and the %nextsitedate, %nextsitedatetime, and %nextsitetime variables.

The %nextfiledate variable is in the form mm-dd-yy (i.e., 02-16-01). Note: the more common
mm/dd/yy (i.e. 02/16/01) form is not used so that the %nextfiledate variable may be used to
name files.

The %nextfiledatetime variable contains a formatted date and time string (i.e., Sat Feb 17
11.00.22 2001).

The %nextfiletime variable is in the form hh.mm.ss (i.e., 11.00.22). Note: the more common
hh:mm:ss (i.e. 11:00:22) form is not used so that the %nextfiletime variable may be used to
name files.

The %nextfilesize variable contains an integer string value corresponding to the size of the file
in bytes (i.e., 66001).

Refer to GETNEXTFILE for more details.

The DATEADD and DATESUB script commands may be used to manipulate %nextfiledate or
other date variable.

See also: Using the %date, %datetime, and %time Variables,

112

2013 Serengeti Systems Incorporated

Using the %port Variable

The %port variable is initialized automatically to the COM port and may be used by a script to
easily identify the port in use.

You might, for example, want to have the same script to be used by multiple instances of
FileLink and still be able to create dialog messages, files names, etc. that include the active
port number.

The following example creates a variable containing a file name that includes the port number.
If FileLink is operating on COM3, the resulting variable would be out3.

SET output_file = "out" + %port

113Internal Script Variables

2013 Serengeti Systems Incorporated

Using the %rcvfilecount and %sendfilecount Variables

The %rcvfilecount and %sendfilecount variables record the number of files transferred with
the most recent RCVFILE and SENDFILE script commands, respectively.

Consider the following example in which the total number of files downloaded is used in a
message that is displayed to the user.

RCVFILE "*.*"

SET msg = %rcvfilecount + " files received"

MESSAGEBOX msg

Consider the following example in which the total number of files uploaded is used in a
message that is displayed to the user.

SENDFILE "*.*"

SET msg = %sendfilecount + " files sent"

MESSAGEBOX msg

Related Command(s): RCVFILE, SENDFILE

114

2013 Serengeti Systems Incorporated

Using the %snapshotfiles Variable

This variable is set by the SNAPSHOT script command.

The %snapshotfiles variable contains the total number of files examined by the most recent
SNAPSHOT command when scanning the local PC file system within the folder and subfolders
(if any) specified.

These variable(s) may be used with the %difffiles variable for record keeping or reporting
purposes depending on the requirements of your application.

115Internal Script Variables

2013 Serengeti Systems Incorporated

Using the %zipcount and %upzipcount Variables

The %zipcount and %upzipcount variables record the number of files zipped and unzipped
with the most recent ZIP and UNZIP script commands, respectively.

Consider the following example in which the total number of files zipped is used in a message
that is displayed to the user.

ZIP "zipfile" "*.xml"

SET msg = %zipcount + " XML files zipped"

MESSAGEBOX msg

Script File Command Overview

This section describes all the commands available for script processing. Commands are
shown in uppercase for legibility but may be upper or lower case when used.

The general syntax of a FileLink script command is shown below.

opcode [arg1] … [argn]

The opcodes for the various commands are listed below:

; or * -Comment line

: -Label marker

@ -Suppress command and results from logging

! -Suppress command only from logging

ANSWER -Wait for incoming telephone call

APPEND -APPEND one file to another

ASK -Display question in a Yes/No dialog box

AUTHDATA -Obtain user data from authorization file

AUTHPW -Verify remote user password

AUTHUSER -Verify remote user name

BEGINFUNCTIONS -Begin function declaration section in script file

BREAK -Set a script file breakpoint

BROWSE -Display a pop-up open file dialog box

CALL -CALL another script file

CHAIN -Transfer to another script file

CHGDIR -An alias for the

CONNECT -open direct connection

CONSOLE -Control output to CONSOLE window

COPY -COPY one file to another location

CREATEMAIL -Create An e-mail message

CRON -script scheduling using crontab file

116

2013 Serengeti Systems Incorporated

DATEADD -Add days to a date variable

DATESUB -Subtract days from a date variable

DBCLOSE -Close and optionally delete a database file

DBGETRESULTS -Get results froma database query

DBQUERY -Issue a database query

DBREWIND -Reset results search to beginning

DBUSE -Create and/or open a database file

DEC -Decrement a variable by one

DELDIR -Delete an empty local folder

DELETE -DELETE a file

DIAL -Initiate modem auto-dialer

DIFF -Find differences between current state of the local PC file
system and the last snapshot or DIFF operation

DIFFREWIND -Reset file pointer for GETDIFF command

DISCONNECT -DISCONNECT the line

DISPLAY -DISPLAY all or a specified variable

DOSCMD -Execute An internal MS-DOS command

ENDFUNCTION -End function declaration

ENDFUNCTIONS -End function declaration section in script file

EXEC -Execute An external program

EXIT -Quit FileLink

EXPORT -EXPORT configuration settings to a file

FLUSH -FLUSH characters from receive buffer

FUNCTION -Begin FUNCTION declaration

GETDIFF -Sequentially report the different files found during the last
DIFF operation

GETFILE -Get next file in local folder/subfolder tree

GETMAIL -Get An e-mail message

GETNEXTFILE -Get next file in a local directory

GETREWIND -Reset GETFILE to first matching file

GO -(Re)run the currently selected script file from beginning

GOTO -Direct flow to Label

IFDATE -Conditional branch upon file date comparison

IFERROR -Conditional branch after testing result code

IFFILE -Conditional branch on file existence

IFNFILE -Conditional branch on file non-existence

IFNO -Conditional branch if ‘No’ is clicked in ASK dialog box

IFNSTRCMP -Conditional branch when two string variables are not equal

IFNSUBSTR -Conditional branch if sub-string is not found in string variable

IFNUM -Conditional branch upon numeric variable comparison

IFSIZE -Conditional branch upon file size comparison

IFSTRCMP -Conditional branch when two string variables are equal

IFSUBSTR -Conditional branch if sub-string is found in string variable

IFTIME -Conditional branch upon file time comparison

IFYES -Conditional branch if ‘Yes’ is clicked in ASK dialog box

IMPORT -IMPORT configuration settings from a file

INC -Increment a variable by one

LINEIN -Read one or more characters from COM port

117Script File Command Overview

2013 Serengeti Systems Incorporated

LINEOUT -Write one or more characters to COM port

LISTDIR -Write local directory listing to a file

LOG -Specify the script LOG file name

LOGMSG -Write a message to the script LOG file

LOGNTEVENT -Write a message to the NT application event LOG

LOOPCOUNT -Set maximum loop repetition

LOOPIF -Conditional branch used in conjunction with LOOPCOUNT

LOOPTO -Unconditional branch used in conjunction with LOOPCOUNT

MAILTO -Send An e-mail message (manually) via default e-mail client

MAKEFILENAME -Create a unique, non-existant file name

MESSAGEBOX -DISPLAY text in message box

MINIMIZE -MINIMIZE FileLink window

MODEMCMD -Send AT command to modem

MODEMDEFAULTS -Restore modem factory default settings

MODEMDETECT -Detect first available COM port and/or modem in system

MODEMRESET -Sent Reset command to modem

MODEMRESP -Read response to command Sent to modem

MOVE -MOVE one file to another location

NATO -Specify a No activity time-outNATO

MAKEDIR -Create a new local folder

PAUSE -PAUSE for specified length of time or until specified
hour:minute

PERFORM -Execute script command contained in character string or
variable

PGPCOMMAND -Send a “raw” GnuPG command

PGPDECRYPT -Decrypt a PGP encrypted file

PGPENCRYPT -Encrypt a file using PGP

PGPIMPORT -IMPORT a PGP key

PLAYSOUND -Play a sound (.wav) file

PRESSANYKEY -Suspend script execution pending a key press

PRINT -PRINT a file

PROMPT -DISPLAY message box and accept user input

PROTOCOL -Specify default file Transfer PROTOCOL

RCVFILE -Receive one or more files

READFILE -Read string variable value from text file

RENAME -RENAME a file

REMOTECMD -PERFORM a script command received via a COM port

RESTORE -RESTORE minimized FileLink window to original size

RESUME -RESUME execution of a script file stopped AT a breakpoint

RETURN -Force RETURN from a FUNCTION

SENDCMD -Send script command to remote FileLink (same as
LINEOUT)

SENDFILE -Send one or more files

SENDMAIL -Send An e-mail message

SET -Assign or concatenate string variable(s)

SETEXTRACT -Extract delimited substring from a string

SETLEFT -Extract left substring

SETLEN -Assign length of specified string to a variable

118

2013 Serengeti Systems Incorporated

SETMID -Extract mid substring

SETNUM -Assign or evaluate numeric variable(s)

SETSUBSTR -Find number of substrings in string

SETRIGHT -Extract right substring

SPEAKER -Control modem SPEAKER mode

SNAPSHOT -Take SNAPSHOT of current state of local PC file system

SRVNAME -Define service name and Control interaction with SrvMonitor

STOP -Stops script processing

TERMINAL -Activate the TTY TERMINAL applet

TRACELOG -Specify trace/diagnostic LOG file name

TRACEWIN -Open/Close trace logging window

UNZIP -Extract file(s) from a zip archive

USEPORT -Specify COM port and parameters

WORKINGDIR -Specify default working folder

WRITEFILE -Write character string or string variable value to text file

ZIP -Create or Add to a ZIP archive

See also: Script File Command Arguments, Sample Script Files

119Script File Command Overview

2013 Serengeti Systems Incorporated

Script Commands Grouped by Function

Configuration Commands

PROTOCOL - Specify default file transfer protocol

USEPORT - Specify COM port and parameters

Debugging Commands

BREAK - Set a script file breakpoint

GO - (Re)run the currently selected script file from beginning

RESUME - Resume execution of a script file stopped at a breakpoint

E-mail Commands

CREATEMAIL - Create an e-mail message

GETMAIL - Get an e-mail message

SENDMAIL - Send an e-mail message

FileLink Host Mode Authorization Commands

AUTHDATA - Obtain user data from authorization file

AUTHPW - Verify remote user password

AUTHUSER - Verify remote user name

Function Directives and Commands

BEGINFUNCTIONS - Begin function declaration section in script file

ENDFUNCTION - End function declaration

ENDFUNCTIONS - End function declaration section in script file

FUNCTION - Begin function declaration

RETURN - Force return from a function

Link Connection/Establishment and Disconnect Commands

ANSWER - Wait for incoming telephone call

CONNECT - Open direct connection

DIAL - Initiate modem auto-dialer

DISCONNECT - Disconnect the line

Local File Commands

APPEND - Append one file to another

APPEND - Append one file to another

ARCHIVEDIR - Define FileLink’s archive folder

CHGDIR - An alias for the WORKINGDIR command

COPY - Copy one file to another location

DELDIR - Delete an empty local folder

DELETE - Delete a file

EXPORT - Export configuration settings to a file

120

2013 Serengeti Systems Incorporated

GETFILE - Get next file in local folder/subfolder tree

GETNEXTFILE - Get next file in a local folder

IMPORT - Import configuration settings from a file

LISTDIR - Write local directory listing to a file

MAKEDIR - Create a new local folder

MAKEFILENAME - Create a unique, non-existant file name

MAKEDIR - Create a new local folder

MOVE - Move one file to another location

PRINT - Print a file

READFILE - Read string variable value from text file

RENAME - Rename a file

UNZIP - Extract file(s) from a zip archive

WRITEFILE - Write character string or string variable value to text file

ZIP - Create or add to a zip archive

Log File / Console Control Commands

CONSOLE - Control output to console window

LOG - Specify the script log file name

LOGMSG - Write a message to the script log file

LOGNTEVENT - Write a message to the NT application event log

SRVNAME - Define service name and control interaction with SrvMonitor

TRACELOG - Specify trace/diagnostic log file name

Modem Control Commands

MODEMCMD - Send AT command to modem

MODEMDEFAULTS - Restore modem factory default settings

MODEMDETECT - Detect first available COM port and/or modem in system

MODEMRESET - Send reset command to modem

MODEMRESP - Read response to command sent to modem

SPEAKER - Control modem speaker mode

Script File Branching Commands

GOTO - Direct flow to label

IFDATE - Conditional branch upon file date comparison

IFERROR - Conditional branch after testing result code

IFFILE - Conditional branch on file existence

IFNFILE - Conditional branch on file non-existence

IFNO - Conditional branch if ‘No’ is clicked in ASK dialog box

IFNSTRCMP - Conditional branch when two string variables are not equal

IFNSUBSTR - Conditional branch if sub-string is not found in string variable

IFNUM - Conditional branch upon numeric variable comparison

IFSIZE - Conditional branch upon file size comparison

IFSTRCMP - Conditional branch when two string variables are equal

121Script File Command Overview

2013 Serengeti Systems Incorporated

IFSUBSTR - Conditional branch if sub-string is found in string variable

IFTIME - Conditional branch upon file time comparison

IFYES - Conditional branch if ‘Yes’ is clicked in ASK dialog box

LOOPCOUNT - Set maximum loop repetition

LOOPIF - Conditional branch used in conjunction with LOOPCOUNT

LOOPTO - Unconditional branch used in conjunction with LOOPCOUNT

Script File Control Commands

CALL - Call another script file

CHAIN - Transfer to another script file

CRON - Script scheduling using crontab file

DISPLAY - Display all or a specified variable

DOSCMD - Execute an internal MS-DOS command

EXEC - Execute an external program

EXIT - Quit FileLink

NATO - Specify a no activity time-out

PAUSE - Pause for specified length of time or until specified hour:
minute

PERFORM - Execute script command contained in character string or
variable

RETURN - Return from a called script file

STOP - Stops script processing

Serial COM Port I/O Commands

FLUSH - Flush characters from receive buffer

LINEIN - Read one or more characters from COM port

LINEOUT - Write one or more characters to COM port

RCVFILE - Receive one or more files

REMOTECMD - Perform a script command received via a COM port

SENDCMD - Send script command to remote FileLink (same as LINEOUT)

SENDFILE - Send one or more files

SQL Database Commands

DBCLOSE - Close and optionally delete a database file

DBGETRESULTS - Get results froma database query

DBQUERY - Issue a database query

DBREWIND - Reset results search to beginning

DBUSE - Create and/or open a database file

User Interface Commands

ASK - Display question in a Yes/No dialog box

BROWSE - Display a pop-up open file dialog box

MESSAGEBOX - Display text in message box

PLAYSOUND - Play a sound (.wav) file

122

2013 Serengeti Systems Incorporated

PROMPT - Display message box with title and prompt, and accept user
input

TERMINAL - Activate the TTY Terminal applet

Variable Commands

DATEADD - Add days to a date variable

DATESUB - Subtract days from a date variable

DEC - Decrement a variable by one

INC - Increment a variable by one

SET - Assign or concatenate string variable(s)

SETEXTRACT - Extract delimited substring from a string

SETLEN - Assign length of specified string to a variable

SETLEFT - Extract left substring

SETMID - Extract mid substring

SETNUM - Assign or evaluate numeric variable(s)

SETRIGHT - Extract right substring

SETSUBSTR - Find number of substrings in string

Window Control Commands

MINIMIZE - Minimize FileLink window

RESTORE - Restore minimized FileLink window to original size

TRACEWIN - Open/close trace logging window

123Script File Command Overview

2013 Serengeti Systems Incorporated

ANSWER -- Wait for incoming telephone call

Syntax: ANSWER [/options]

Arguments: none

Options: /timeout=nn Answer time-out in seconds; if 0, wait indefinitely

This script command places the modem into auto-answer mode and waits for an incoming call.

Related Command(s): DIAL, CONNECT, MODEMRESET

124

2013 Serengeti Systems Incorporated

APPEND -- Append one local file to another

Syntax: APPEND

Arguments: [src name] Variable or string defining a file or path name; if no path is
defined FileLink’s working folder is used

[dest name] Variable or string defining a file or path name; if no path is
defined FileLink’s working folder is used

Options: none

This script command to append the source file to the destination file.

Related Command(s): COPY, DELETE, RENAME, WORKINGDIR

125Script File Command Overview

2013 Serengeti Systems Incorporated

ARCHIVEDIR -- Define FileLink's archive folder

Syntax: ARCHIVEDIR [path name]

Arguments: [path name] A variable or string to specify the path name of FileLink’s
archive folder (directory)

Options: None

This script command defines the folder to be used when the /archive option is used on the
SENDFILE command.

Consider the following example.

;; archive "c:\Program Files\FileLink\example.txt"

ARCHIVEDIR "c:\Program Files\FileLink\archive"

SENDFILE "example.txt" /archive

Related Command(s): MAKEDIR, SENDFILE, WORKINGDIR

126

2013 Serengeti Systems Incorporated

ASK -- Display dialog box with yes/no question

Syntax: ASK [message] [title]

Arguments: [message] Variable or string defining a text message to display within a
pop-up dialog box (up to 1000 characters).

[title] Variable or string defining the window title displayed in the
dialog box.

Options: /large Select this option to display the dialog box in a larger 12
point font rather than the default 8 point.

/local By default, FileLink displays a message box in the center of
the screen. Use this option if you wish the box to be
centered relative to the FileLink window instead.

/nocrlf Ignore embedded \n and/or \r carriage control.

This command not allowed when running as an NT Service or in a locked minimized window.

This script command displays a dialog box with Yes and No buttons. The window title and text
within the dialog are specified in the command. Control returns to next script command when
you close the dialog by clicking on one of the buttons. This command is useful to ask yes or no
questions of an operator during the course of a file transfer session.

If FileLink is running a script in a unlocked minimized window then FileLink’s window will be
restored when this command is performed.

Consider the following example of a script file that prompts if a file should be sent to the
remote system.

ASK "Send file now?" "Question"

IFNO goto do_not_send

SENDFILE file_name

:do notsend

The dialog looks like the following.

Two embedded formatting or carriage control character sequences are recognized. A \n
sequence is interpreted as a carriage return and a \r sequence is interpreted as a line feed.
Use of this carriage control sequences permit you to display multiple lines inside a dialog box.
For example:

ASK " Line 1 \n\r Line 2 \n\r Question?"

127Script File Command Overview

2013 Serengeti Systems Incorporated

Use of the option /nocrlf suppresses the recognition of the \n and \r sequences. This is useful
if you are displaying file names in the message box that may include either of these two
sequences. For example:

ASK "Send c:\newfile\reports.dat now?" /nocrlf

The [message] can be quite large -- up to 1000 characters. When using extremely long
messages, we suggest that you precede the command with an @ modifier to suppress the
echoing of the command to the console window and log file to preserve readability. Use care
also not to overflow the possible space in the Windows dialog box that this script command will
display by including too many embedded carriage control sequences.

The /large and /local options may not be used together.

Related Commands: MESSAGEBOX, PROMPT, IFYES, IFNO

See also: Running FileLink With Prompting

128

2013 Serengeti Systems Incorporated

AUTHDATA -- Obtain user data from authorization file

Syntax: AUTHDATA [user] [data] [field] [auth file]

Arguments: [user] Variable or string defining a user name; this is typically
received from a remote user by way of the LINEIN
command

[data] Variable where the user data is to be stored

[field] Variable or string specifying which of the two available user
data fields is to be obtained; this value must be either "1" or
"2"

[auth file] Optional variable or string defining the name of the
authorization file; if this is omitted, the default file
"authorization.txt" is used

Options: None

This script command would be used when FileLink is acting as a host to remote systems in an
async modem protocol file transfer environment.

This command to may be used to obtain pre-defined information about a particular remote
user. The process involves prompting for a user name, searching for a match within a
previously created authorization file, and if found, returning one of two different string values
associated with that user. See Authorization File Format for more information on how these
values are stored.

Consider the following example where the remote user is prompted for a user name and
password, and if the user is verified, the working folder for that user is changed to a directory
name saved in the first data field for that user in the default authorization file.

LINEOUT "Enter your user name:"

LINEIN username /timeout=60

AUTHUSER username

IFERROR= $ERROR_AUTHORIZATION_FAILED goto UnrecognizedUser

LINEOUT "Enter your password:"

LINEIN password /timeout=60

AUTHPW username password

IFERROR= $ERROR_AUTHORIZATION_FAILED goto InvalidPassword

AUTHDATA username new_dir "1"

IFERROR= $ERROR_AUTHORIZATION_FAILED goto InvalidUser

WORKINGDIR new_dir

A matching entry in the authorization file might look like the following.

username,password,\user\username

Related Command(s): AUTHPW, AUTHUSER

See also: Authorizing Remote Users, Dial-In Connection With Authorization

129Script File Command Overview

2013 Serengeti Systems Incorporated

AUTHPW -- Verify remote user password

Syntax: AUTHPW [user] [password] [auth file]

Arguments: [user] Variable or string defining a user name; this is typically
received from a remote user by way of the LINEIN
command

[password] Variable or string defining a password; this is typically
received from a remote user by way of the LINEIN
command

[auth file] Optional variable or string defining the name of the
authorization file; if this is omitted, the default file
"authorization.txt" is used

Options: None

This script command would be used when FileLink is acting as a host to remote systems in an
async modem protocol file transfer environment.

This command to may be used after a remote user had been identified to verify that they have
a valid password. The verification process involves prompting for a user name, searching for a
match within a previously created authorization file, and if found, repeating the prompting
process to obtain the user's password. A look up in the authorization file is then performed to
match the password with the user name. See Authorization File Format for more information.

Consider the following example where the remote user is prompted for a user name and
password, and the user is verified using the default authorization file.

LINEOUT "Enter your user name:"

LINEIN username /timeout=60

AUTHUSER username

IFERROR= $ERROR_AUTHORIZATION_FAILED goto UnrecognizedUser

LINEOUT "Enter your password:"

LINEIN password /timeout=60

AUTHPW username password

IFERROR= $ERROR_AUTHORIZATION_FAILED goto InvalidPassword

Related Command(s): AUTHDATA, AUTHUSER

See also: Authorizing Remote Users, Dial-In Connection With Authorization

130

2013 Serengeti Systems Incorporated

AUTHUSER -- Verify remote user name

Syntax: AUTHUSER [user] [auth file]

Arguments: [user] Variable or string defining a user name; this is typically
received from a remote user by way of the LINEIN
command

[auth file] Optional variable or string defining the name of the
authorization file; if this is omitted, the default file
"authorization.txt" is used

Options: none

This script command would be used when FileLink is acting as a host to remote systems in an
async modem protocol file transfer environment.

This command to may be used to verify that a remote user is authorized to communicate with
FileLink. The verification process involves prompting for a user name and then searching for a
match within a previously created authorization file. See Authorization File Format for more
information on this file.

Consider the following example where the remote user is prompted for their user name and it
is verified using the default authorization file.

LINEOUT "Enter your user name:"

LINEIN username /timeout=60

AUTHUSER username

IFERROR= $ERROR_AUTHORIZATION_FAILED goto UnrecognizedUser

Related Command(s): AUTHDATA, AUTHPW

See also: Authorizing Remote Users, Dial-In Connection With Authorization

131Script File Command Overview

2013 Serengeti Systems Incorporated

BEGINFUNCTIONS -- Begin function declaration section

Syntax: BEGINFUNCTIONS

Arguments: None

Options: None

This script directive is used to mark the beginning of a function declaration section of a script
file. A function declaration section must be at the beginning of the script file (before any
functions are called) and must not be used in any script file invoked with a CALL script
command.

Consider the following examples.

BEGINFUNCTIONS

FUNCTION MyFunction

;; body of MyFunction

ENDFUNCTION

ENDFUNCTIONS

BEGINFUNCTIONS

FUNCTION MyFunction1

;; body of MyFunction1

ENDFUNCTION

FUNCTION MyFunction2

;; body of MyFunction2

ENDFUNCTION

ENDFUNCTIONS

Related Command(s): ENDFUNCTION, ENDFUNCTIONS, FUNCTION, RETURN

132

2013 Serengeti Systems Incorporated

BREAK -- Set a breakpoint location

Syntax: BREAK

Arguments: None

Options: None

This command is used to set “breakpoints” in script files for debugging purposes.

When debugging, place the BREAK command at strategic places in the flow of execution of a
script file to be debugged and script execution will be suspended when BREAK is
encountered. When in debug mode, make sure that the Enable Breakpoints the Scripts menu
is enabled.

After encountering BREAK, the FileLink script processor suspends the script and FileLink
enters the break state and control is returned to the console window. Here you can view
variable values, for example, by typing DISPLAY commands into the console command line,
reassign variable values by typing SET or SETNUM, and then resume script execution from
the point of interruption.

Script execution may be resumed by typing the RESUME command into the console
command line or by clicking the Skip To Next Command (Ctrl + N) toolbar button.

When your script has been throughly debugged, either edit your script and remove all the
BREAK commands or clear the Enable Breakpoints control in the Scripts menu and BREAK
commands will be ignored.

Related Command(s): GO, RESUME, STOP

See also: Debugging Script Files

133Script File Command Overview

2013 Serengeti Systems Incorporated

BROWSE -- Display a pop-up open file dialog box

Syntax: BROWSE [variable] [title] [initdir] [filter] [options]

Arguments: [variable] A variable to store the file name or file name with full path
selected in the open file dialog box; if the variable does not
previously exist, it is created.

[title] Optional variable or string defining a open file dialog box
window title. If not specified, neither [initdir] nor [filter]
may be specified.

[initdir] Optional variable or string defining the initial folder for the
open file dialog box. If not specified, [filter] may not be
specified.

[filter] Optional variable or string defining a filter to be used when
displaying files in the open file dialog box.

Options: /nopath When this option is used only the file name is saved in
[variable]. By default the full path and file name is
returned.

This command not allowed when running as an NT Service or in a locked minimized window.

This script command displays a open file dialog box on your display that permits browsing for a
user-selected file. The window title, starting folder, and a file name filter may be specified in
the command. Control returns to next script command when you close the dialog by clicking on
the OK or Cancel buttons. This command is useful to allow a user to make a select of a file to
be processed by a running script.

If FileLink is running a script in a unlocked minimized window then FileLink window will be
restored when this command is performed.

The script file can detect if the Cancel button has been clicked by testing for result code 1013 or
the $ERROR variable $ERROR_PROMPT_CANCELLED.

 Related Commands: MESSAGEBOX, ASK, PROMPT

134

2013 Serengeti Systems Incorporated

CALL -- Call another script file

Syntax: CALL [file name] | [/options]

Arguments: [file name] Variable or string defining a file or path name; if no path is
defined

Options: /silent Do not echo script commands or results to log file or
FileLink window.

&arg& Up to nine arguments may be passed to the called script in
the same manner that they may be passed from the
command line into FileLink when it is launched; the first
argument is saved in script variable %1, the second in %2,
etc. up to %9.

Use of this script command temporarily transfers control to another script file. When the called
script file exits, control returns to the original script file at the statement immediately following
the CALL statement.

The following is an example of calling a script file and of the script file being called.

CALL "called_script.s"

The called script file might contain the following.

MESSAGEBOX "now running called_script.s"

RETURN

Arguments may be passed to a called script using the &..& syntax. Any strings found between
two & delimiters are saved in sequence in internal variables named %1 through %9 which are
then accessible within the called script. The following example passes two arguments.

CALL "called_script.s" &arg1& &arg2&

When the called script is running, it will find %1 = “arg1” and %2 = “arg2”.

Note: any changes made to the FileLink environment in a called script will persist after
returning to the calling script. For example, if the working folder is changed the change will
remain in effect upon the return. View called scripts as simply extensions to the original script,
not as separate environments.

Related Command(s): CHAIN, EXEC, RETURN, WORKINGDIR

135Script File Command Overview

2013 Serengeti Systems Incorporated

CHAIN -- Transfer to another script file

Syntax: CHAIN [file name] | [/options]

Arguments: [file name] Variable or string defining a file or path name; if no path is
defined

Options: &arg& Up to nine arguments may be passed to the chained script
in the same manner that they may be passed from the
command line into FileLink’s when it is launched; the first
argument is saved in script variable %1, the second in %2,
etc. up to %9.

Use of this script command transfers control to another script file. Control does not return to
the original script file.

Arguments may be passed to a called script using the &..& syntax. Any strings found between
two & delimiters are saved in sequence in internal variables named %1 through %9 which are
then accessible within the chained to script. The following example passes two arguments.

CHAIN "called_script.s" &arg1& &arg2&

When the new script is running, it will find %1 = “arg1” and %2 = “arg2”.

Consider the following example where a variable has been previously saved to determine
which of two script files are to be executed.

IFSTRCMP which_one "its2" goto chain_to_2

CHAIN "script1.s"

:chain to_2

CHAIN "script2.s"

Related Command(s): CALL, EXEC , WORKINGDIR

136

2013 Serengeti Systems Incorporated

CHGDIR -- Change local default folder

Syntax: CHGDIR [folder name]

Arguments: [folder name] Variable or string defining the new default folder name.

Options: None

This is an alias for the WORKINGDIR script command.

Related Command(s): DELDIR, MAKEDIR, WORKINGDIR

137Script File Command Overview

2013 Serengeti Systems Incorporated

CONNECT -- Open direct connection

Syntax: CONNECT [/options]

Arguments: None

Options: /timeout=nn Connection time-out in seconds; if 0, wait indefinitely

This script command is used to establish a non-modem connection on a COM port. On a COM
port, this command raises the DTR modem signal. If constant carrier is configured, this
command also raises the RTS modem signal. A connection is established when FileLink
detects the DSR modem signal (and the CTS signal if constant carrier is configured.)

Consider the following example.

;; direct connect on a COM port

CONNECT /timeout=60

Related Command(s): DIAL, ANSWER

138

2013 Serengeti Systems Incorporated

CONSOLE -- Control output to console window

Syntax: CONSOLE [/options]

Arguments: None

Options: /off Turn off all output to the console window

/on Turn on output to console window

When running scripts, it may be desirable to suppress the echoing of commands to the
console window for all or a part of script file execution. Use this command to turn off and on
output to the console window as desired. Even with output to the console window suppressed,
output to the log file is not affected.

139Script File Command Overview

2013 Serengeti Systems Incorporated

COPY -- Copy one local file to another location

Syntax: COPY [src file] [dest file]

Arguments: [src name] Variable or string defining a file or path name; if no path is
defined FileLink’s working folder is used

[dest name] Variable or string defining a file or path name; if no path is
defined FileLink’s working folder is used

Options: None

This script command to copies the source file to the destination location.

Full file or path names are required. For example, the following is a valid command.

COPY "c:\test\file" "c:\test2\file"

The following is an invalid command in the same environment.

COPY "c:\test\file" "c:\test2"

Related Command(s): APPEND, MOVE, DELETE, RENAME, WORKINGDIR

140

2013 Serengeti Systems Incorporated

CREATEMAIL -- Create an e-mail message

Syntax: CREATEMAIL [from name] [from email] [subj] [body] [attach]
[options]

Arguments: [from name] Variable or string defining the optional name of the sender

 [from email] Variable or string defining the e-mail address of the
sender.

 [subj] Variable or string defining an optional subject line for the
e-mail message

 [body] Variable or string defining the body of the message.

 [attach] Variable or string defining the file name of an optional
attachment for the e-mail message

Options: /nocrlf Ignore embedded \n and/or \r carriage control

This command builds an e-mail message to be sent using the SENDMAIL command. The
recipient of a message is specified in the SENDMAIL command.

All of the arguments to this command are required; however the [from name], [subj], and
[attach] arguments may be empty strings.

The [body] variable provides for a simple message body. No formatting is permitted (i.e., no
carriage control). Variables, hence the message body, cannot be longer than 2040 characters.
Use an attachment file to send larger messages.

Carriage control within the message body (i.e., a \n to insert a line feed in the message and a
\r to insert a carriage return) is permitted unless the /nocrlf option is specified. Use of the
option /nocrlf suppresses the recognition of the \n and \r sequences. This is useful if you are
e-mailing file names in the message body that may include either of these two sequences.

Consider the following example where an e-mail message is created with an attachment.

SET from = "FileLink Sales"

SET email = "sales@FileLink.com"

SET subj = "Thanks for your order!"

SET body = "An invoice is attached"

SET attach = "c:\sales\customer.inv"

CREATEMAIL from email subj body attach

The following example results in a message without an attachment.

SET from = "FileLink Sales"

SET email = "sales@FileLink.com"

SET subj = "Thanks for your order!"

SET body = "We appreciate your business."

CREATEMAIL from email subj body ""

Related Command(s): SENDMAIL, GETMAIL

141Script File Command Overview

2013 Serengeti Systems Incorporated

CRON -- Schedule script operations

Syntax CRON [file name]

Alt Syntax: CRON [@ cond] [cmd]

Arguments: [file name] Variable or string defining a file or path name; if no path
is defined FileLink’s working folder is used; this cron
event file contains one or more scheduling conditions; if
omitted, the default file is "crontab.txt" in FileLink's
working folder; see Cron Event File Format.

 [@ cond] Variable or string specifying one of FileLink's pre-defined
scheduling conditions; these conditions must begin with
the '@' symbol (e.g., @hourly).

 [cmd] Optional variable or string to be stored in the %nextcmd
variable; this permits a particular command to be
performed when a pre-defined scheduling condition is
matched; see Using the %nextcmd Variable.

Options: none

This script command provides FileLink with extensive scheduling capabilities which surpasses
those of the PAUSE command.

Two forms of scheduling are supported: (1) predefined conditions for a single event (e.g., twice
daily); and (2) complex user defined conditions (e.g., 4PM Monday through Friday and
midnight Sunday).

In either case, a script command (or other character string) may be specified to be saved in
the %nextcmd variable when there is a match. Often this will be a command to execute a
particular script file at the time of the event. (The command would be executed in a
subsequent PERFORM command.) This command string is optional.

Single event scheduling is achieved using one of the following designators:

@yearly midnight Jan 1

@monthly midnight, first day of each month

@weekly midnight, each Sunday

@daily midnight, each day

@hourly daily, every hour on the hour

@every2hours daily, every two hours beginning at midnight

@every4hours daily, every four hours beginning at midnight

@every6hours daily, every six hours beginning at midnight

@every8hours daily, every eight hours beginning midnight

@twicedaily daily, at midnight and noon

@onhalfhour daily, every hour on the half hour

@everyhalfhour daily, every half hour

@every15min daily, every 15 minutes

@every5min daily, every 5 minutes

Consider the following example where FileLink sends a file every 30 minutes.

142

2013 Serengeti Systems Incorporated

:loop

;; note the use of both single and double quotation marks

CRON "@onhalfhour" 'SENDFILE "30minutes.dat"'

PERFORM %nextcmd

GOTO loop

More complex scheduling conditions are achieved using the CRON command slightly
differently and uses a file containing one or more conditions. This file is referred as a crontab
file. You may use a file of any name, but if you do not specify a file name in the CRON
command, FileLink uses a default name of "crontab.txt".

The format of this file is complex (see Crontab File Format) and not something the casual user
needs to be concerned with. The CronMaker utility is provided with FileLink for the direct
creation and modification of “crontab.txt” files.

Technically savvy users may want to consider the following example where FileLink executes
a unique script file on each weeknight at 11PM. The crontab file located in the FileLink
working folder, named "crontab.txt", would contain:

run a script at 11PM every weekday

0 23 * * mon CALL "Monday.s"

0 23 * * tue CALL "Tuesday.s"

0 23 * * wed CALL "Wednesday.s"

0 23 * * thu CALL "Thursday.s"

0 23 * * fri CALL "Friday.s"

The FileLink script file would look like:

:loop

CRON

PERFORM %nextcmd

GOTO loop

When the CRON command executes it will display a confirmation message to the console as
to when the next CRON event will trigger. Using the previous example, if today is Monday at
5PM, the CRON command would confirm the next event to occur at 11PM later that day with
the following message:

*CRON will trigger at 11:00PM today and run this command: "CALL "Monday.s""

When no command string is specified, the CRON command is similar to the PAUSE
command in that it simply waits until there is a match in schedule time(s) before script
execution is allowed to resume.

Important

If there are multiple trigger events in the “crontab.txt” file, be aware that CRON
does not queue events that may occur at the same time. For example, if you

143Script File Command Overview

2013 Serengeti Systems Incorporated

have two events that are scheduled to trigger at 3:30PM, CRON will act only
upon the first and the second will be ignored. If you need to have multiple
scripts run the same time off of a single event trigger, you should make a single
corresponding script “smart” enough to use the CALL script command to run
the other(s) sequentially.

Related Command(s): PAUSE, WORKINGDIR

See also: Crontab File Format, Using the %nextcmd Variable

144

2013 Serengeti Systems Incorporated

DATEADD-- Add specified number of days to date variable

Syntax: DATEADD [variable] [const]

Arguments: [variable] A variable containing a date in the format of mm-dd-yy.

 [const] A variable or a numeric constant representing the number
of days to add to the date contained in [variable].

Options: none

This script command is used to add a specified number of days to date variable.

Consider the example below where 14 days is added to a variable containing current date.

SET today = %date

DATEADD today 14

The number of days to add may also be expressed in a variable as shown below.

SET today = %date

SETNUM SETdays = 14

DATEADD today days

The %date internal variable may not be used in this command directly.

Related Command(s): DATESUB

See also: Using the %date, %datetime, and %time Variables

145Script File Command Overview

2013 Serengeti Systems Incorporated

DATESUB -- Subtract specified number of days from date variable

Syntax: DATESUB [variable] [const]

Arguments: [variable] A variable containing a date in the format of mm-dd-yy.

 [const] A variable or a numeric constant representing the number
of days to subtract from the date contained in [variable].

Options: none

This script command is used to subtract a specified number of days to date variable.

Consider the example below where 14 days is subtract to a variable containing current date.

SET today = %date

DATESUB today 14

The number of days to subtract may also be expressed in a variable as shown below.

SET today = %date

SETNUM SETdays = 14

DATESUB today days

The %date internal variable may not be used in this command directly.

Related Command(s): DATEADD

See also: Using the %date, %datetime, and %time Variables

146

2013 Serengeti Systems Incorporated

DBCLOSE -- Close and optionally delete SQL database file

Syntax: DBCLOSE [/options]

Arguments: None

Options: /delete Delete the file after closing it.

This script command is used to close a SQL database file when it is no longer needed.

Add the /delete option if the file is considered temporary and it should be deleted after being
closed.

When a database file is closed, FileLink deletes any %db_xxxx variable(s) that may have
been created by prior execution of the DBGETRESULTS script command.

Related Command(s): DBGETRESULTS, DBUSE, DBQUERY

147Script File Command Overview

2013 Serengeti Systems Incorporated

DBGETRESULTS -- Get results from a SQL database query

Syntax: DBGETRESULTS

Arguments: None

Options: None

This script command is used to obtain the results of a previous query into a SQL database file
submitted by the DBQUERY script command.

DBGETRESULTS returns query results sequentially one row at a time. If multiple rows are
expected from a given query, DBGETRESULTS would be called multiple times to fetch the
data from all rows. When using the built-in SQLite database engine a maximum of 1000 rows
are available. This row limit does not apply to ODBC connections made using a DSN.

Script variable(s) of the form %db_xxxx corresponding to each column in the database table
are created by this command and are assigned the value found in the particular database row
being returned. The %dbqueryvariables script variable is assigned to the total number of
variables created.

For example, if a table in a given SQL database is created with two columns, one named “fld1”
and the other “fld2” then two %db_xxxx variables will be created by the DBGETRESULTS
command as shown .

DBGETRESULTS

DISPLAY %db_fld1

DISPLAY %db_fld2

The following example shows how multiple rows may be retrieved when a suitable query has
been issued to the database.

:loop

DBGETRESULTS

IFERROR $ERROR_DB_ALL_RESULTS_RTND GOTO done

DISPLAY %db_fld1

DISPLAY %db_fld2

DISPLAY %dbqueryvariables

GOTO loop

:done

In some cases DBGETRESULTS may not recognize the results of a query and/or is unable to
create corresponding %db_xxxx variables. In such a case, DBGETRESULTS returns
$ERROR_DB_RAW_QUERY_RESULTS and the raw results string is assigned to the %
dbqueryrawresult script variable. If you are expecting a differently formatted query result then
you can parse this string programmatically or, otherwise, use this variable for troubleshooting
purposes.

Related Command(s): DBCLOSE, DBUSE, DBQUERY, DBREWIND

148

2013 Serengeti Systems Incorporated

DBQUERY -- Issue a SQL query

Syntax: DBQUERY [query]

Arguments: [query] Variable or string defining a SQL query to issue.

Options: None

This script command is used to execute SQL statements on the currently open database the
results of which may be processed using the DBGETRESULTS script command.

The built-in SQLite database engine will fail and return an $ERROR_DB_QUERY_FAILED
error on queries that return more than 1000 rows. This row limit does not apply to ODBC
connections made using a DSN. Any query returning columns with more than 4096 characters
will fail with an $ERROR_DB_UNSUPPORTED_RESULT error.

Use of the FileLink SQL database commands assumes that you have a working knowledge of
SQL databases and queries. It is beyond the scope of FileLink documentation or technical
support to offer support or education related to SQL so the syntax and format of any command
or query submitted via the DBQUERY script command is left to the script programmer.

The first query submitted to a newly created database (see DBUSE) should create any
necessary table(s) that you wish to save data into. An example query to create a table named
MyTable is shown below.

DBQUERY "create table MyTable (fld1 text primary key, fld2 text);"

Data may then be saved in the database as shown in the following example which adds two
rows of data to the database.

DBQUERY "insert into MyTable values ('row1', 'data1');"

DBQUERY "insert into MyTable values ('row2', 'data2');"

To locate data in the database, a query like the following might be used.

DBQUERY "select * from MyTable where fld1='row1';"

IFERROR $ERROR_DB_QUERY_FAILED GOTO done

A whole depth and breadth of SQL commands may be submitted in this manner. Consult SQL
documentation for possible queries and syntax. A good resource is http://www.sqlite.org.
SQLite is the SQL database engine employed by FileLink.

Related Command(s): DBCLOSE, DBGETRESULTS, DBUSE

149Script File Command Overview

2013 Serengeti Systems Incorporated

DBREWIND -- Reset query results pointer to first row of results

Syntax: DBREWIND

Arguments: None

Options: None

This script command is used to reset the query results pointer back to the first row of the most
recent query issued by the DBQUERY script command.

The DBGETRESULTS command is used to sequentially retrieve row(s) resulting from a query.
You’d issue the DBREWIND command if you ever wish to have DBGETRESULTS start over
again from the first row.

Related Command(s): DBGETRESULTS, DBQUERY

150

2013 Serengeti Systems Incorporated

DBUSE -- Create and/or open a SQL database file

Syntax: DBUSE [dbfile] [/options]

Arguments: [dbfile] Variable or string defining a database file name; if no path
is defined, FileLink’s working folder is used.

Options: /new Create the file if it does not exist.

/odbc Use an ODBC Data Source Name (DSN) instead of a
filename.

/pw=xx Optional password to use with the /odbc option.

/user=xx Optional username to use with the /odbc option.

This script command is used to open a database file or connection. Only one database may be
open at any time. Once the database file or connection is open you can use the DBQUERY
script command to execute SQL statements and the DBGETRESULTS command to process
the results of those statements. Execute the DBCLOSE command to stop using a database
file or connection.

Database Files

Call the DBUSE command with no options to open an existing SQLite database file. Add the /
new option if the database file does not exist and you want a new file to be created. When a
new file is created it is just an empty database - you must create one or more tables in the
database file via the DBQUERY script command before data rows may be inserted. If a
database file does exist then the /new option empties it.

Note: The built-in SQLite database engine is unable to process queries that return more than
1000 rows of results.

ODBC Database Connections

Use the /odbc option to specify that the [file name] argument refers to the name of a ODBC
User or System Data Source Name (DSN.) File DSNs are not supported. You can create DSN
records using the Data Sources tool in the Administrative Tools folder under the Control Panel.
This tool is named ODBC Data Source Administrator in some versions of Windows. The exact
steps for creating a DSN depends on the features of your database's ODBC driver and is
beyond the scope of this help topic. Please contact your local database administrator to
resolve DSN configuration issues.

Note: FileLink is a 32 bit application. If you want to use a User or System DSN on a 64 bit
version of Windows you must use the 32-bit version of the ODBC Data Source Administrator
by running %systemroot%\sysWOW64\odbcad32.exe. Be sure to use the full path
because the 64-bit version of the file is named %systemroot%\system32\odbcad32.exe
so it is quite easy to run the wrong version by mistake. The name of your 32-bit DSN must be
unique; your queries may fail if your computer also has a 64-bit DSN defined that shares the
same name.

The /user and /pw options can optionally be combined with the /odbc option if you don't save
database access credentials in your DSN. Creating a single shared System DSN without
stored credentials may be preferable to creating separate User DSN records for each user
account on a shared computer.

Related command(s): DBQUERY, DBGETRESULTS, DBCLOSE, DBREWIND,

151Script File Command Overview

2013 Serengeti Systems Incorporated

DEC -- Decrement a variable by one

Syntax: DEC [variable]

Arguments: [variable] A variable containing from one to six numeric characters.

Options: None

This script command is used to decrement a variable by one. If each character in the variable
is not numeric (e.g., digits 0 - 9), then the command fails.

Numeric strings used in the DEC (and INC) command are assumed to be a fixed length of one
to six characters and contain leading zeros. When the value of a variable goes negative, the
value wraps (i.e., a two character string is less than 00 after subtracting one then the value set
to 99; 0 wraps to 9; 000 wraps to 999; etc.)

Caution

This command is primarily intended to provide a mechanism for sequentially
naming files, not as a simple numeric function. So its behavior of wrapping
from 00 to 99, for example, may not be appropriate when doing simple
arithmetic. The DEC command may be used for both purposes but you need to
remain aware of the command’s behavior.

If the variable is not previously assigned, the variable is created and set equal to 000.

Consider the example below where a variable is used to retrieve sequentially named files
(using an decrementing file extension - i.e., file.999, file.998, etc.) from a remote system. Note:
numeric values should be assigned enclosed in quotation marks when strings with leading
zeroes are desired.

SET basename = "file."

SETNUM counter = "000"

:loop

DEC counter

SET file name = basename & counter

DISPLAY filename

RCVFILE file_name

GOTO loop

In another use, consider the example below where a variable is used as a decrementing loop
counter.

SETNUM counter = 10

;; loop 10 times

:loop

DISPLAY counter

DEC counter

IFNUM! counter 0 goto loop

Related Command(s): IFNUM, INC, SET, SETNUM

152

2013 Serengeti Systems Incorporated

DELDIR -- Delete an empty local folder

Syntax: DELDIR [folder name]

Arguments: [folder name] Variable or string defining the local folder name to delete.

Options: None

This script command deletes an empty local folder (also referred to as a directory). Consider
the following example in which a folder is deleted on the E: drive.

DELDIR "e:\newbie"

Related Command(s): CHGDIR, MAKEDIR, WORKINGDIR

153Script File Command Overview

2013 Serengeti Systems Incorporated

DELETE -- Delete a local file

Syntax: DELETE [file name]

Arguments: [file name] Variable or string defining a file or path name; if no path is
defined, FileLink’s working folder is used.

Options: None

This script command deletes the specified file.

Related Command(s): COPY, APPEND, RENAME, WORKINGDIR

154

2013 Serengeti Systems Incorporated

DIAL -- Initiate modem auto-dialer

Syntax: DIAL [phone #] | [/options]

Arguments: [phone #] Variable or string defining the telephone number of the
remote modem that FileLink is to dial; if the phone number
is omitted, the default phone number is dialed; the [phone
] string may include modem command modifiers.

Options: /timeout=nn Dial time-out in seconds; if 0, wait indefinitely

This script command passes the phone number argument to the modem auto-dialer and waits
for a connection. Use this command for modem connections to asynchronous hosts for TTY or
file transfer .

Related Command(s): CONNECT, ANSWER, MODEMRESET

155Script File Command Overview

2013 Serengeti Systems Incorporated

DIFF -- Look for differences in the local PC file system

Syntax: DIFF [path] [dbfile] [/options]

Arguments: [path] Optional Variable or string defining the starting local path
from which to begin looking for differences; if omitted, the
current working folder is used and [dbfile] defaults to
“snapshot_local.sql”.

 [dbfile] Optional Variable or string defining an alternative to the
default “snapshot_local.sql” database file where a
previous snapshot has been saved.

Options: /incldirs Look for differences in the current or specified folder and
all subfolders thereunder.

 /noupdate Do not update the snapshot with differences found.

This script command is used in conjunction with the SNAPSHOT and GETDIFFscript
commands to locate individual file differences (i.e., change in size, date/time stamp) within a
specified folder (and optional subfolder) tree within the local PC file system.

SNAPSHOT is the first step to establish a baseline (or “snapshot”) of the specified folder(s)
from which to determine if any file(s) change. DIFF is used subsequently to compare the
current state of the file system with what was saved in [dbfile]. Any changes found are saved
back into the same database file (to be processed using the GETDIFF command) and the
original snapshot is updated to reflect the current state of the file system (unless this is
suppressed by the inclusion of the /noupdate option.

If the [dbfile] argument is specified it must be the name of a database file previously created
by the SNAPSHOT command. If omitted the default “snapshot_local.sql” file is used.

Consider the following example which compares the current working folder and any subfolders
with the snapshot saved in the default “snapshot_local.sql” file.

DIFF "*.*" /incldirs

The total number of differences found in the local PC file system is saved in the %difffiles
script variable.

Related Command(s): DIFFREWIND, GETDIFF, SNAPSHOT

156

2013 Serengeti Systems Incorporated

DIFFREWIND -- Reset file pointer for GETDIFF command

Syntax: DIFFREWIND

Arguments: None

Options: None

This script command is used in conjunction with the GETDIFF command to reset the file
pointer to the first difference recorded in the database.

You might use this command to “rewind” to the beginning of a series of differences being
examined with the GETDIFF command if you need to repeat some process.

Related Commands: GETDIFF

157Script File Command Overview

2013 Serengeti Systems Incorporated

DISPLAY -- Display all or a specified variable

Syntax: DISPLAY [variable]

Arguments: [variable] A previously defined variable (optional).

Options: None

This script command may be used to output all variables currently assigned or one specific
variable. The variable name(s) and associated value(s) are written to the FileLink window and
to the log file. Both internal and user defined variables are included.

Related Command(s): SET

158

2013 Serengeti Systems Incorporated

DISCONNECT -- Disconnect the line

Syntax: DISCONNECT

Arguments: None

Options: None

This script command is used to disconnect FileLink from the remote system. On a COM port,
this command drops the DTR and RTS modem signals.

Related Command(s): DIAL, CONNECT, ANSWER,

159Script File Command Overview

2013 Serengeti Systems Incorporated

DOSCMD -- Execute an MS-DOS command

Syntax: DOSCMD [cmd]

Arguments: [cmd] Variable or string defining an MS-DOS command such as
dir, copy, mkdir, etc. to be executed.

Options: None

This script command executes a specified MS-DOS internal command. FileLink is suspended
until the execution of the command is complete.

Consider the following example that lists the contents of the current folder to a file.

DOSCMD "dir *.* > tempfile"

Consider the following example where a new folder is created and the contents of the current
folder is copied there.

DOSCMD "mkdir \newfolder"

DOSCMD "copy *.* \newfolder"

Upon return, any exit code from the process launched with DOSCMD is saved in the %
lasterror script variable and can be tested with any of the IFERRORcommands. For example:

DOSCMD "fc file1.txt file2.txt"

;; ‘fc’ returns 2 if it cannot compare the specified files

IFERROR= 2 GOTO fc_error

Related Command(s): CALL, CHAIN , EXEC

See also: Script File Result Codes

160

2013 Serengeti Systems Incorporated

ENDFUNCTION -- End function declaration

Syntax: ENDFUNCTION

Arguments: None

Options: None

This script directive is used to mark the end a function.

Consider the following example.

BEGINFUNCTIONS

FUNCTION MyFunction

;; body of MyFunction

ENDFUNCTION

ENDFUNCTIONS

Related Command(s): BEGINFUNCTIONS, ENDFUNCTIONS, FUNCTION, RETURN

161Script File Command Overview

2013 Serengeti Systems Incorporated

ENDFUNCTIONS -- End function declaration section

Syntax: ENDFUNCTIONS

Arguments: None

Options: None

This script directive is used to end the function declaration section of a script file. A function
declaration section must be at the beginning of the script file (before any functions are called)
and must not be used in any script file invoked with a CALL script command.

Consider the following examples.

BEGINFUNCTIONS

FUNCTION MyFunction

;; body of MyFunction

ENDFUNCTION

ENDFUNCTIONS

Related Command(s): BEGINFUNCTIONS, ENDFUNCTION, FUNCTION, RETURN

162

2013 Serengeti Systems Incorporated

EXEC -- Execute a external program

Syntax: EXEC [exec name] [/options]

Arguments: [exec name] Variable or string defining a file or path name of an
executable program including any program command line
arguments; if no path is defined FileLink’s working folder
is used; MS-DOS internal commands such as dir are not
supported.

Options: /nowait Continue script execution after starting external program.

 /passargs Any subsequent variables or strings following this option
are passed as arguments to the program to be run.

 /passerror Pass the result code from the last script command as an
argument to the executed program.

This script command executes a specified external program.

The /nowait option determines if the script file execution is suspended until the external
program is complete or continues to run. If this option is omitted, script file execution resumes
when the program terminates.

The /passargs option allows you to pass any number of variable or string values from the
script file to the program to be executed as if they specified on the Shortcut Target command
line. Any variables or string values that follows the /passargs delimiter within the EXEC
command line are passed in this way. Consider the following example.

SET program_name = "myprog.exe -abc"

SET flag = "-xyz"

EXEC program_name /passargs "-p2" flag

The effective command line to the program myprog.exe would be:

myprog.exe -abc -p2 -xyz

The exit value of the executed program is obtained by FileLink when it terminates and it
becomes the EXEC command’s result code. This result code may be useful in subsequent
conditional branching tests in the script file.

Consider the following example where you have a program called password .exe which
checks for a valid password string. The program returns 0 if the password is valid and 1
otherwise. The following script file would verify a password and then send a file to the caller
only if an acceptable password was received.

ANSWER /timeout=0

;; wait to receive password text

LINEIN rcvd_password

;; check for valid password in variable 'rcvd_password'

EXEC "password.exe" /passargs rcvd_password

;; don't send if invalid password

IFERROR goto disconnect

163Script File Command Overview

2013 Serengeti Systems Incorporated

;; send the file

SENDFILE file1

:disconnect

DISCONNECT

EXIT

The /passerror switch causes the result code from the last script command to be passed an
argument to the executed process. The form of the argument is /flerr=xx. Consider the
following example where the previous script command terminated with a result code of 1013.

SET program_name = "myprog.exe -abc"

EXEC "program_name" /passerror

The effective command line to the program myprog.exe would be:

myprog.exe -abc /flerr=1013

This option permits an external program to deal specifically with a particular error condition
that may beyond the scope of a FileLink script file.

Related Command(s): CALL, CHAIN , DOSCMD, WORKINGDIR

See also: Script File Result Codes

164

2013 Serengeti Systems Incorporated

EXIT -- Quit FileLink

Syntax: EXIT [/options]

Arguments: [/options]

Options: /exitcode=nn Define exit value for FileLink.

 /forced Exit even if line is connected.

This script command ends script processing and terminates FileLink. The action is the same
as clicking the Exit button on the FileLink toolbar or pressing the Alt-F4 key.

The /exitcode=nn option allows you to define the program exit code passed back to the
operating system or calling process

The /forced option performs a forced quit that terminates any I/O in progress and disconnects
the line prior to exiting.

Related Command(s): STOP

165Script File Command Overview

2013 Serengeti Systems Incorporated

EXPORT -- Export Configuration Settings

Syntax: EXPORT [file name] [/options]

Arguments: [file name] Variable or string defining a file or path name; if no path is
defined FileLink’s working folder is used.

Options: /inclpw Include this option if you wish to export your encoded PGP
private passphrase along with the other FileLink settings.
Generally it is NOT recommended to include your
passphrase in settings that you are distributing unless you
are in control of all locations where these settings may be
distributed.

This script command exports the current configuration settings stored in the Windows registry
to a file. This file may be used in a subsequent import operation to restore a previous set of
configuration settings, to distribute identical settings to multiple sites of FileLink, or may be
requested by technical support to ascertain how FileLink is configured.

Settings may also be exported manually using the Export Settings… command under the File
menu.

Settings may be imported using the IMPORT script command, by the -g command line switch,
or Import Settings… command under the File menu.

Important

Specify the /inclpw option ONLY if you wish to export your encoded PGP
private passphrase along with the other FileLink settings. Generally it is NOT
recommended to include your passphrase in settings that you are distributing
unless you are in control of all locations where these settings may be
distributed.

Related command(s): IMPORT

166

2013 Serengeti Systems Incorporated

FLUSH -- Flush characters from receive buffer

Syntax: FLUSH

Arguments: None

Options: None

This script command flushes the FileLink receive buffer. Use this command to discard any
characters that might have been received spuriously before issuing a LINEIN or RCVFILE
command.

Related Command(s): LINEIN, RCVFILE

167Script File Command Overview

2013 Serengeti Systems Incorporated

FUNCTION -- Begin a function declaration

Syntax: FUNCTION [func name] [arg1 … arg9]

Arguments: [func name] Variable or string specifying a previously declared function
name.

 [arg1 … arg9] Up to nine variables that are assigned when the function is
called.

Options: None

This script directive is used within the function declaration section of a script file to define a
function named [func name] and enable it to be called during execution of the script file.

Function names may be whatever the script developer chooses to use as long as they do not
conflict with script command identifiers.

Up to nine arguments may be passed io a function. When a function declaration is performed,
variables with names matching the arguments are created. Since all variables in a FileLink
script are global, function arguments should be unique from variables that may appear
elsewhere in the script.

Consider the following example where two strings are passed as arguments to a function,
assigned to variables within the function, and displayed.

;; declare our function

BEGINFUNCTIONS

FUNCTION MyFunction arg1 arg2

DISPLAY arg1

DISPLAY arg2

RETURN

ENDFUNCTION

ENDFUNCTIONS

;; script execution begin here

MyFunction "a" "b"

STOP

Related Command(s): BEGINFUNCTIONS, ENDFUNCTION, ENDFUNCTIONS, RETURN

168

2013 Serengeti Systems Incorporated

GETDIFF -- Get specific changes within local PC file system

Syntax: GETDIFF [path] [dbfile]

Arguments: [path] Optional Variable or string defining the starting local
path from which to begin looking for differences; if
omitted, the current working folder is used and [dbfile]
defaults to “snapshot_local.sql”.

[dbfile] Optional Variable or string defining an alternative to
the default “snapshot_local.sql” database file where a
previous snapshot and diff comparison has been
saved.

Options: None

This script command is used in conjunction with the SNAPSHOT and DIFF script commands
to locate individual file differences (i.e., change in size, date/time stamp) within a specified
folder (and optional subfolder) tree within the local PC file system.

SNAPSHOT is the first step to establish a baseline (or “snapshot”) of the specified folder(s)
from which to determine if any file(s) change and DIFF is used subsequently to compare the
current state of the file system with what was saved in [dbfile]. Any changes found are saved
back into the same database file which are then processed by this script command.

If the [dbfile] argument is specified it must be the name of a database file previously created
by a previous DIFF command. If omitted the default “snapshot_local.sql” file is used.

When GETDIFF finds a changed file, the full path name of the changed file is returned in the
%difffilepath script variable, just the file name itself in %difffilenname, a description of the
difference found is returned in the %difffiletext script variable, and a corresponding numeric
representation is saved in the %difffileid script variable. The sequential file number for this
difference is returned in the %diffnum script variable.

The possible differences are:

$DIFF_FILE_NOT_FOUND 5001 **File not found

$DIFF_FILE_IS_NEW 5002 ** File is new

$DIFF_FILE_SIZE 5003 ** File size has changed

$DIFF_FILE_DATETTIME 5004 ** File date/time stamp has changed

GETDIFF must be performed once for each difference that was detected by the DIFF
command and correspondingly saved in [dbfile]. What follows is a simple example that shows
how GETDIFF might be used inside a loop to write all the differences found to a text file.

DIFF "*.*"

:loop

GETDIFF

IFERROR $ERROR_READ_EOF GOTO done

SET Diff = "File: " + %difffilepath + " " + %difffiletext

WRITEFILE "differences.txt" Diff /append

GOTO loop

169Script File Command Overview

2013 Serengeti Systems Incorporated

:done

The following example shows how all new files found are uploaded to the remote system.

DIFF "*.*" /incldirs

:loop

GETDIFF

IFERRORIFERROR $ERROR_READ_EOF GOTO done

IFNUM!= %difffileid $DIFF_FILE_IS_NEW GOTO loop

SENDFILE %difffilepath

GOTO loop

:done

Related Commands: DIFF, DIFFREWIND, SNAPSHOT

170

2013 Serengeti Systems Incorporated

GETFILE -- Get file from folder structure on local PC

Syntax: GETFILE [file name] [/options]

Arguments: [file name] Variable or string defining a file or path name to look for;
wildcard characters allowed; if no path is defined FileLink’

s working folder is used.

Options: /incldirs Descend into local folder(s) as they are found.

 /newest Get the newest file in the folder

 /oldest Get the oldest file in the folder.

 /timeout=nn Time-out in seconds to wait for presence of the file; if this
option is omitted, FileLink looks for the file and if nothing
is found, $ERROR_NO_FILE_FOUND is returned;
otherwise $ERROR_WAIT_TIMED_OUT is returned.

This script command checks for (and optionally waits for) the existence of a file defined by the
[file name] argument. If a matching file is detected, its file name is saved in the %nextfile
variable and its full path name is saved in the %nextpath variables. The date and time of the
file are also saved in the %nextfiledate, %nextfiledatetime, and %nextfiletime variables.
The size of the file, in bytes, is saved in the %nextfilesize variable.

This command is functionally equivalent to the GETNEXTFILE script command except for two
important differences.

GETFILE has the capability to decend into and out of subfolders that it finds in a given folder
tree (assuming the /incldirs option is specified) while GETNEXTFILE does not.
(GETNEXTFILE returns folder names it finds in the %nextfolder script variable instead.)

Secondly, GETFILE does away with the /next option. GETFILE will always return the next file
found when called repeatedly on the same folder structure when there are wildcard character
(s) in [file name]. In the event that you wish to start over with the first matching file in the
folder structure, issue the GETREWIND command and then resume issuing GETFILE.

Otherwise refer to the description of GETNEXTFILE for more details on this command.

Related Commands: GETREWIND

171Script File Command Overview

2013 Serengeti Systems Incorporated

GETMAIL -- Get an e-mail message

Syntax: GETMAIL [server] [subj] [mail file] [/options]

Arguments: [server] Variable or string defining the server URL or IP address
(e.g., pop3.mail.server or 209.198.128.17) of the POP
mail server; the server port is always set to 110.

 [subj] Variable or string for the message subject line; [subj]
must be a variable initialized to an empty string to get the
first available message (the subject line of the message is
returned by way of this variable); or [subj] must be a
variable or string initialized to an non-empty value
specifying the subject line of a specific message to look
for on the server (searches are all inclusive and case-
sensitive).

 [mail file] Variable or string defining the optional file name to which
the received message is written; if [mail file] is an empty
string then the message is discarded.

Options: /nodelete Do not delete the message from the server (leave on
server).

 /pw=xx Define the password to use when logging on to the
incoming mail server.

 /timeout=nn Time-out, in seconds, to wait for message to be received
(if omitted the time-out is set to 30 seconds).

 /user=xx Define the user name to use when logging on to the mail
server.

 /view View the message in a pop-up window.

This command either gets the first e-mail message available on the specified POP3 server or
searches all messages for a one with a matching subject line. Received message may
optionally be viewed and/or saved to a file for processing by another e-mail client or
application. The file contains the full e-mail message, including headers, in .eml format.

When he [subj] variable is set to an empty string when calling GETMAIL, FileLink gets the
next available message on the server. When using GETMAIL in this way, it is recommended to
use a dedicated mailbox to prevent FileLink from possibly obtaining non-relevant messages.
Upon return, the [subj] variable will contain the subject line of the message downloaded. Use
of the /nodelete option is not advised since GETMAIL will return the same message over and
over again unless it is deleted from the server by another user or process.

When searching for a specific message, the [subj] variable must be initialized to the desired
subject line prior to calling GETMAIL. Messages not matching the subject line comparison are
left undisturbed on the server. If you only wish to check for the presense of a specific message
(and leave it on the server too), use the /nodelete option.

Consider the following example in which the first available e-mail message is received but not
saved to a file, and the message is deleted from the server after it is received.

SET server = "pop3.mail.server"

SET subj = ""

;; subj argument MUST be a variable since subject line

;; found in the message is returned

172

2013 Serengeti Systems Incorporated

GETMAIL server subj "" /user=pop3id /pw=pop3pw

In the following example, the first available e-mail message is obtained and written to a
uniquely named file.

SET server = "pop3.mail.server"

SET subj = ""

MAKEFILENAME file "eml" "c:\email messages" "mail"

GETMAIL server subj file /user=pop3id /pw=pop3pw

In the following example, e-mail messages on the server are search for a specific subject. If
found, the message is downloaded, saved to a file, but is left on the server.

SET server = "pop3.mail.server"

MAKEFILENAME file "eml" "c:\email messages" "mail"

;; when subj (variable or string)is not empty, search for this

;; subject line in available messages (nothing is returned)

GETMAIL server "this one" file /user=pop3id /pw=pop3pw /nodelete

In the preceding example, the same message would be returned if GETMAIL was executed
again since /nodelete was specified.

Related Command(s): CREATEMAIL, SENDMAIL

173Script File Command Overview

2013 Serengeti Systems Incorporated

GETNEXTFILE -- Get file or folder names on local PC

Syntax: GETNEXTFILE [file name] [/options]

Arguments: [file name] Variable or string defining a file or path name to look for;
wildcard characters allowed; if no path is defined FileLink’

s working folder is used.

Options: /incldirs Return local folder name(s) as they are found. (Formerly
this was the /subdirs option.)

 /newest Get the newest file in the folder.

 /next Get the next file or folder name in a local folder; omit this
option to obtain the first file from a given local folder; if
you wish to obtain subsequent files from this same folder,
use this option until you find the desired file or no more
files are found (see Important below).

 /oldest Get the oldest file in the folder.

 /timeout=nn Time-out in seconds to wait for presence of the file; if this
option is omitted, FileLink looks for the file and if nothing
is found, $ERROR_NO_FILE_FOUND is returned;
otherwise $ERROR_WAIT_TIMED_OUT is returned.

This script command checks for (and optionally waits for) the existence of a file defined by the
[file name] argument. If a matching file is detected, its file name is saved in the %nextfile
variable and its full path name is saved in the %nextpath and %nextfolder variables. The
date and time of the file are also saved in the %nextfiledate, %nextfiledatetime, and %
nextfiletime variables. The size of the file (excluding a folder), in bytes, is saved in the %
nextfilesize variable.

The use of this command creates what is referred to as the “hot send” function whereby
FileLink automatically sends files when they are placed in a known location.

If a file is open by another application, it will not be ‘seen’ by this command. Furthermore, the
same file will be returned on subsequent iterations of this command unless it is deleted or
renamed.

The /next option allows the entire contents, both files and folder names, of local folders to be
traversed and saved in variables for use in script processing. Without this option, the first file
found in the specified folder will always be returned.

Important

For most reliable operation, use the /next option only on static local folders (i.
e., where no new files are being added and none are being deleted) since each
successive /next skips one file as FileLink scans through a given folder. When
/next is omitted, this command always returns the first file that appears in the
folder (files are returned in unsorted folder order).

Consider the following example where FileLink waits indefinitely for any file with a .txt
extension to be created in its working folder.

GETNEXTFILE "*.txt" /timeout=0

Once such a file exists, its name is saved in the %nextfile variable, its path and name is saved

174

2013 Serengeti Systems Incorporated

in the %nextpath variable, and script execution resumes.

Consider the following example where all the files in the specified folder are sent to the remote
system.

:label

GETNEXTFILE "\upload_dir*.*" /timeout=2

IFERROR= $ERROR_WAIT_TIMED_OUT goto sent_last_file

SENDFILE %nextfile /type=BIN

IFERROR goto xmt_error

DELETE %nextfile

GOTO label

:sent_last_file

Consider the following example in which the file and folder names in the current local folder
are identified and displayed by using the /next option.

GETNEXTFILE "*.*" /incldirs

:loop

IFSTRCMP %nextfile "" goto dir

!DISPLAY %nextfile

!DISPLAY %nextfolder

!DISPLAY %nextpath

PAUSE /for=1

GOTO next

:dir

IFSTRCMP %nextfolder "" goto error

!DISPLAY %nextfile

!DISPLAY %nextfolder

!DISPLAY %nextpath

PAUSE /for=1

:next

GETNEXTFILE "*.*" /next /incldirs

IFERROR= $ERROR_NO_FILE_FOUND goto finish

GOTO loop

:error

MESSAGEBOX "This shouldn't ever appear..."

STOP

:finish

MESSAGEBOX "Shown all files!"

The /newest and /oldest options are normally used with a wildcard [file name] to obtain the
name of the newest or oldest file present. Use of these options with the /next option is not
supported. Consider the following example where all files are sent to the remote system
beginning with the newest.

:next_file

175Script File Command Overview

2013 Serengeti Systems Incorporated

GETNEXTFILE "*.*" /newest

IFERROR= $ERROR_NO_FILE_FOUND goto label

SENDFILE %nextfile

DELETE %nextfile

GOTO next_file

:label

The /incldirs option may be used if you wish local folder names to be returned along with
regular file names as they are found. When a folder is found, it is saved in the %nextfolder
variable and the %nextfile variable is set to an empty string. The /oldest and /newest options
have no affect on the folder names returned by the GETNEXTFILE command. Consider the
following example that shows how folder files are distinguished from other files.

:look_for_folder

GETNEXTFILE "*.*" /incldirs /next

IFERROR= $ERROR_NO_FILE_FOUND goto error

IFNSTRCMP %nextfile "" goto look_for_folder

; both %nextfile and %nextfolder will not be empty at same time

DISPLAY %nextfolder

GOTO look_for_folder

:error

The date and time of the file obtained with the command is saved to three internal variables
named %nextfiledate, %nextfiledatetime, and %nextfiletime. This permits you to directly
compare the file’s date and time to values of your choosing. Consider the following example
that shows how a file newer than a specified date may be found.

:not_new

GETNEXTFILE "*.*" /next

IFERROR= $ERROR_NO_FILE_FOUND goto error

SET filedate = "file date is " & %nextfiledate

DISPLAY filedate

IFDATE< "06-30-02" goto not_new

MESSAGEBOX "found file created after June 30, 2002"

STOP

:error

Related Commands: WORKINGDIR

See also: Using The %nextfile, %nextpath, and %nextfolder Variables,

Using The %nextfiledate, %nextfiledatetime, %nextfilesize, and %nextfiletime
Variables,

176

2013 Serengeti Systems Incorporated

GETREWIND -- Reset file pointer for GETFILE command

Syntax: GETREWIND

Arguments: None

Options: None

This script command is used in conjunction with the GETFILE command to reset the file
pointer to the first wildcard matching file.

You might use this command to “rewind” to the beginning of a series of files found with the
GETFILE command if you need to repeat some process.

Related Commands: GETFILE

177Script File Command Overview

2013 Serengeti Systems Incorporated

GO -- Rerun the currently defined script file

Syntax: GO

Arguments: None

Options: None

This command is intended to be used from the console command line during debugging to (re)
run the currently selected script file. This command has the same effect as clicking the Rerun
Script File (Ctrl + R) button on the toolbar.

The GO command is not supported as a command within a script file itself - it is only for use
from the console command line during script debugging.

Related Command(s): BREAK, RESUME, STOP

178

2013 Serengeti Systems Incorporated

GOTO -- Direct flow to label

Syntax: GOTO [label]

Arguments: [label] A valid label within the current script file.

Options: None

This command directs the flow of execution within a script file to [label]. Even though script
file labels begin with a colon, the colon is omitted in the GOTO (and other branching)
commands. For example:

:loop

…

GOTO loop

See also: Labels In Script Files

179Script File Command Overview

2013 Serengeti Systems Incorporated

IFDATE -- Conditional branch upon file date comparison

Form 1

Syntax: IFDATExx [date1] [date2] goto [label]

Forms: IFDATE= [date1] [date2] goto [label]

 IFDATE< [date1] [date2] goto [label]

 IFDATE> [date1] [date2] goto [label]

 IFDATE<= [date1] [date2] goto [label]

 IFDATE>= [date1] [date2] goto [label]

 IFDATE! = [date1] [date2] goto [label]

Arguments: [date1] Variable or string defining a date in the format of mm.dd.yy

 [date2] Variable or string defining a date in the format of mm.dd.yy

 [label] A valid label within the current script file which is branched to if
the date condition is satisfied.

Options: none

Form 2

Syntax: IFDATE [cond] goto [label]

Arguments: [cond] Variable or string defining a date condition to test against the
internal %comparedate variable.

 [label] A valid label within the current script file which is branched to if
the date condition is satisfied.

Options: none

Form 3

Syntax: IFDATExx [date] goto [label]

Forms: IFDATE= [date] goto [label]

 IFDATE< [date] goto [label]

 IFDATE> [date] goto [label]

 IFDATE<= [date] goto [label]

 IFDATE>= [date] goto [label]

 IFDATE! = [date] goto [label]

Arguments: [date] Variable or string defining a date in the format of mm.dd.yy to
compare against the date stamp of the file obtained with the
most recent GETNEXTFILE script command.

 [label] A valid label within the current script file which is branched to if
the date condition is satisfied.

Options: none

Form 1 of this command is used to compare two specified date strings in the format of mm.dd.
yy.

Form 2 of this command is used in conjunction with the most recent to compare the date of the
file with a specified date string.

Form 3 of this command is used in conjunction with the most recent GETNEXTFILE to
compare the date of the file with a specified date string.

180

2013 Serengeti Systems Incorporated

When specifying a date, leading zeroes are required. The following are examples of valid date
strings.

01-30-00 January 30, 2000

12-25-99 December 25, 1999

Syntactically, no space is permitted to the left of the ‘!’, '=', '<' or '>' symbols, and a space is
required to the right of these symbols.

Example of Form 1

The following conditional branch is taken if the current date is past June 30, 2003.

IFDATE> %date "06-30-03" goto later date

Example of Form 2

The following conditional branch is taken if a local file just obtained with the GETNEXTFILE
command has a date stamp after June 30, 2003.

GETNEXTFILE "*.txt"

IFDATE> "06-30-03" goto good file

Example of Form 3

The following conditional branch is taken if a local file just obtained with the GETNEXTFILE
command has a date stamp after June 30, 2003.

GETNEXTFILE "*.txt"

IFDATE> "06-30-03" goto_good

Related Command(s): GETNEXTFILE, IFSIZE, IFTIME

181Script File Command Overview

2013 Serengeti Systems Incorporated

IFERROR -- Conditional branch after testing result code

Syntax: IFERRORxx [rcode] goto [label]

Forms: IFERROR [rcode] goto [label]

 IFERROR= [rcode] goto [label]

 IFERROR< [rcode] goto [label]

 IFERROR> [rcode] goto [label]

 IFERROR<= [rcode] goto [label]

 IFERROR>= [rcode] goto [label]

 IFERROR! = [rcode] goto [label]

Arguments: [rcode] Optional numeric value or $ERROR variable associated
with result codes returned by script commands upon
completion; any successful operation returns a value of 0.

 [label] A valid label within the current script file which is branched
to if the conditional test is successful.

Options: none

This script command checks the result of the previously executed command to see if
IFERRORxx [rcode] is true. If so, the script file branches to [label], otherwise execution
continues with the next command.

The [rcode] may be omitted if you do not wish to test for a specific error condition. A value of
1 is assumed, which results in testing for any error condition. The following variations of the
IFERROR command are supported:

IFERROR= (equal to)

IFERROR< (less than)

IFERROR> (greater than)

IFERROR<= (less than or equal to)

IFERROR!= (not equal to)

IFERROR or IFERROR>= (greater than or equal to)

Syntactically no space is permitted to the left of the '=', '<' or '>' symbols, and a space is
required to the right of these symbols.

Consider the following examples.

;; if result code is greater than 1046 then branch to label

;; 'next', else continue with the next line

IFERROR> 1046 goto next

;; if result code equals predefined $ERROR variable then branch

;; to label 'next'

IFERROR $ERROR_CONNECT_TIMEOUT goto next

Related Command(s): LOOPIF, GOTO

See also: Script File Result Codes

182

2013 Serengeti Systems Incorporated

IFFILE -- Conditional branch on file existence

Syntax: IFFILE [file name] goto [label]

Arguments: [file name] Variable or string defining a file or path name; if no path is
defined FileLink’s working folder is used.

 [label] A valid label within the current script file which is branched
to if the specified file exists.

Options: none

This script command checks for the existence of the specified file and branches to [label] if
the file exists. FileLink attempts to open the file to ascertain if it exists or not, so make sure
that you have the proper privileges to access the file.

For example:

IFFILE "c:\Program Files\FileLink\thisfile" goto found it

Note: Wildcard characters in [file name] are not permitted.

Related Command(s): IFNFILE, WORKINGDIR

183Script File Command Overview

2013 Serengeti Systems Incorporated

IFNFILE -- Conditional branch on file non-existence

Syntax: IFNFILE [file name] goto [label]

Arguments: [file name] Variable or string defining a file or path name; if no path is
defined, FileLink’s working folder is used.

 [label] A valid label within the current script file which is branched
to if the specified file does not exist.

Options: none

This script command checks for the existence of the specified file and branches to [label] if
the file does not exist. FileLink attempts to open the file to ascertain if it exists or not, so make
sure that you have the proper privileges to access the file.

For example:

IFNFILE "c:\Program Files\FileLink\thisfile" goto not found

Note: Wildcard characters in [file name] are not permitted.

Related Command(s): IFFILE, WORKINGDIR

184

2013 Serengeti Systems Incorporated

IFNO -- Conditional branch if 'No' is clicked in ASK dialog box

Syntax: IFNO goto [label]

Arguments: [label] A valid label within the current script file.

Options: None

This command not supported when running in a minimized window or as an NT Service.

This script command is used in conjunction with the ASK command. If you click the ‘No’ button
in the ASK dialog box, this command branches to [label].

For example:

ASK "Yes or No?"

IFNO goto answer is no

Related Command(s): ASK, IFYES

185Script File Command Overview

2013 Serengeti Systems Incorporated

IFNSTRCMP -- Conditional branch when two string variables are not equal

Syntax: IFNSTRCMP [string1] [string2] goto [label]

Alt Syntax: IFNSTRCMPI [string1] [string2] goto [label]

Arguments: [string1] Variable or string defining first string to compare.

 [string2] Variable or string defining second string to compare.

 [label] A valid label within the current script file which is branched to if
the two strings do not match.

Options: none

This script command compares two strings and branches to [label] if they are not exactly the
same.

Use the alternate IFNSTRCMI command to perform the same comparison but to ignore case
during the comparison.

Consider the following example in which the script file accepts a string from a user prompt and
branches to a label if the string is not what is expected.

PROMPT serial_number "Enter serial number"

IFNSTRCMP serial_number "010101" goto invalidnumber

Related Command(s): IFSTRCMP, IFSUBSTR , IFNSUBSTR

186

2013 Serengeti Systems Incorporated

IFNSUBSTR -- Conditional branch if sub-string is not found in string
variable

Syntax: IFNSUBSTR [string] [substring] goto [label]

Alt Syntax: IFNSUBSTRI [string] [substring] goto [label]

Arguments: [string] Variable or string defining master string.

 [substring] Variable or string defining substring to find.

 [label] A valid label within the current script file which is branched to if
the substring is not contained within the master string.

Options: none

This script command attempts to locate a substring with a specified master string and
branches to [label] if it is not found.

Use the alternate IFNSUBSTRI command to perform the same comparison but to ignore case
during the comparison.

Consider the following simple example that results in a branch to the specified label.

SET master_string = "abcdefg"

SET substring = "xyz"

IFNSUBSTR master_string substring goto substring_not_found

Related Command(s): IFSTRCMP, IFNSTRCMP , IFSUBSTR

187Script File Command Overview

2013 Serengeti Systems Incorporated

IFNUM -- Conditional branch upon numeric variable comparison

Syntax: IFNUMxx [num1] [num2] goto [label]

Forms: IFNUM= [num1] [num2] goto [label]

 IFNUM< [num1] [num2] goto [label]

 IFNUM> [num1] [num2] goto [label]

 IFNUM<= [num1] [num2] goto [label]

 IFNUM>= [num1] [num2] goto [label]

 IFNUM! = [num1] [num2] goto [label]

Arguments: [num1] Variable, string, or numeric constant defining the first numeric
value to compare against.

 [num2] Variable, string, or numeric constant defining the second
numeric value to compare against.

 [label] A valid label within the current script file which is branched to if
the numeric condition is satisfied.

Options: none

This command is used to compare two variables, strings that contain numeric values (e.g.,
contain only digits 0 - 9), or numeric constants. The command results in a syntax error if either
value is non-numeric.

For example, the following conditional branch is taken if the numeric variable x is equal to
1000.

SETNUM x = 1000

IFNUM= x 1000 goto equal_value

The following conditional branch is taken if the numeric variable x is larger than 1000.
(Numeric strings are used instead of numeric constants simply as an example of allowed
syntax.)

SETNUM x = "2300"

IFNUM> x "1000" goto larger_value

Syntactically, no space is permitted to the left of the ‘!’, '=', '<' or '>' symbols, and a space is
required to the right of these symbols.

Related Command(s): DEC, INC, SETNUM

See also: Performing Variable Arithmetic and Numeric Comparisons

188

2013 Serengeti Systems Incorporated

IFSIZE -- Conditional branch upon file size comparison

Syntax: IFSIZExx [size] goto [label]

Forms: IFSIZE= [size] goto [label]

 IFSIZE< [size] goto [label]

 IFSIZE> [size] goto [label]

 IFSIZE<= [size] goto [label]

 IFSIZE>= [size] goto [label]

 IFSIZE! = [size] goto [label]

Arguments: [size] Variable, string, or numeric constant defining a numeric value
to compare against the size of the file obtained with the most
recent GETNEXTFILE script command.

 [label] A valid label within the current script file which is branched to if
the date condition is satisfied.

Options: none

This command is used in conjunction with the most recent GETNEXTFILE compare the size of
the file with a specified numeric value.

The following conditional branch is taken if a local file just obtained with the GETNEXTFILE
command has a size larger than 1000 bytes.

GETNEXTFILE "*.txt"

IFSIZE> 1000 goto good_file

Syntactically, no space is permitted to the left of the '!', '=', '<' or '>' symbols, and a space is
required to the right of these symbols.

Related Command(s): GETNEXTFILE, IFDATE, IFTIME

189Script File Command Overview

2013 Serengeti Systems Incorporated

IFSTRCMP -- Conditional branch when two string variables are equal

Syntax: IFSTRCMP [string1] [string2] goto [label]

Alt Syntax: IFSTRCMPI [string1] [string2] goto [label]

Arguments: [string1] Variable or string defining first string to compare.

 [string2] Variable or string defining second string to compare.

 [label] A valid label within the current script file which is branched to if
the two strings match.

Options: none

This script command compares two strings and branches to [label] if they are exactly the
same.

Use the alternate IFSTRCMPI command to perform the same comparison but to ignore case
during the comparison.

Consider the following example in which the script file accepts a string from an operator and
compares it to see if it is valid.

PROMPT user_id "Enter your User ID"

IFSTRCMP user_id "BANK11" goto valid_user

Related Command(s): IFNSTRCMP, IFSUBSTR , IFNSUBSTR

190

2013 Serengeti Systems Incorporated

IFSUBSTR -- Conditional branch if sub-string is found in string variable

Syntax: IFSUBSTR [string] [substring] goto [label]

Alt Syntax: IFSUBSTRI [string] [substring] goto [label]

Arguments: [string] Variable or string defining master string.

 [substring] Variable or string defining substring to find.

 [label] A valid label within the current script file which is branched to if
the substring is contained within the master string.

Options: none

This script command attempts to locate a substring with a specified master string and
branches to [label] if it is found.

Use the alternate IFSUBSTRI command to perform the same comparison but to ignore case
during the comparison.

Consider the following simple example that results in a branch to the specified label.

SET master_string = "abcdefg"

SET substring = "cde"

IFSUBSTR master_string substring goto substring_found

Related Command(s): IFSTRCMP, IFNSTRCMP , IFNSUBSTR

191Script File Command Overview

2013 Serengeti Systems Incorporated

IFTIME -- Conditional branch upon time comparison

Form 1

Syntax: IFTIMExx [time1] [time2] goto [label]

Forms: IFTIME= [time1] [time2] goto [label]

 IFTIME< [time1] [time2] goto [label]

 IFTIME> [time1] [time2] goto [label]

 IFTIME<= [time1] [time2] goto [label]

 IFTIME>= [time1] [time2] goto [label]

 IFTIME! = [time1] [time2] goto [label]

Arguments: [time1] Variable or string defining a time in the format of hh.mm.ss or
hh.mm.

 [time2] Variable or string defining a time in the format of hh.mm.ss or
hh.mm.

 [label] A valid label within the current script file which is branched to if
the time condition is satisfied.

Options: none

Form 2

Syntax: IFTIMExx [time] goto [label]

Forms: IFTIME= [time] goto [label]

 IFTIME< [time] goto [label]

 IFTIME> [time] goto [label]

 IFTIME<= [time] goto [label]]

 IFTIME>= [time] goto [label]

 IFTIME! = [time] goto [label]

Arguments: [time] Variable or string defining a time in the format of hh.mm.ss or
hh.mm to compare against the time stamp of the file obtained
with the most recent GETNEXTFILE script command.

 [label] A valid label within the current script file which is branched to if
the time condition is satisfied.

Options: none

Form 1 of this command is used to compare two specified time strings in format of hh.mm.ss

or hh.mm.

Form 2 of this command is used in conjunction with the most recent GETNEXTFILE to
compare the time of the file with a specified time string.

The time must be expressed in military time (hours 00 through 23), and leading zeroes are
required. When times are compared, seconds are always ignored. The following are examples
of valid time strings.

01.30.00 1:30AM

17.30 5:30PM

12.15 12:15PM

192

2013 Serengeti Systems Incorporated

Example of Form 1

The following conditional branch is taken if the current time is later than 11AM.

IFTIME> %time "11.00.00" goto later time

Example of Form 2

The following conditional branch is taken if a local file just obtained with the GETNEXTFILE
command has a time stamp is older than 5:30PM.

GETNEXTFILE "*.txt"

IFTIME< "17.30" goto old file

Syntactically, no space is permitted to the left of the ‘!’, '=', '<' or '>' symbols, and a space is
required to the right of these symbols.

Related Command(s): GETNEXTFILE, IFDATE

193Script File Command Overview

2013 Serengeti Systems Incorporated

IFYES -- Conditional branch if 'Yes' is clicked in ASK dialog box

Syntax: IFYES goto [label]

Arguments: [label] A valid label within the current script file.

Options: none

This command not supported when running in a minimized window or as an NT Service.

This script command is used in conjunction with the ASK command. If you click the ‘Yes’
button in the ASK dialog box, this command branches to [label].

For example:

ASK "Yes or No?"

IFYES goto answer is yes

Related Command(s): ASK, IFNO,

194

2013 Serengeti Systems Incorporated

IMPORT -- Import Configuration Settings

Syntax: IMPORT [file name]

Arguments: [file name] Variable or string defining a file or path name; if no path is
defined FileLink’s working folder is used.

Options: none

This script command imports a set of configuration settings from the specified file and stores
them as the current configuration in the Registry. The import operation may be used to restore
a previous set of configuration settings, or install settings distributed to multiple FileLink sites.

Settings may also be imported manually using the Import Settings command under the File
menu or by using the -g command line switch.

Settings are exported using the EXPORT command or via Export Settings command under
the File menu.

Related command(s): EXPORT

195Script File Command Overview

2013 Serengeti Systems Incorporated

INC -- Increment a variable by one

Syntax: INC [variable]

Arguments: [variable] A variable containing from one to six numeric characters.

Options: none

This script command is used to increment a variable by one. If each character in the variable is
not numeric (e.g., digits 0 - 9), then the command fails.

Numeric strings used in the INC (and DEC) command are assumed to be a fixed length of one
to six characters and contain leading zeros. When the extent of a variable is exceeded, the
value wraps (i.e., a two character string is greater than 99 after adding one then the value
wraps to 00; 9 wraps to 0; 999 wraps to 000; etc.)

Caution

This command is primarily intended to provide a mechanism for sequentially
naming files, not as a simple numeric function. So its behavior of wrapping
from 99 to 00, for example, may not be appropriate when doing simple
arithmetic. The INC command may be used for both purposes but you need to
remain aware of the command’s behavior.

If the variable is not previously assigned, the variable is created and is set equal to 000.

Consider the example below where a variable is used as a loop counter. In this case, the
leading zero is required even as a loop counter in order for counter to become greater than
9.

SETNUM counter = 01

;; loop 20 times

:loop

DISPLAY counter

INC counter

IFNUM< counter 20 goto loop

Related Command(s): DEC, IFNUM, SET, SETNUM,

196

2013 Serengeti Systems Incorporated

LINEIN -- Read one or more characters from COM port

Syntax: LINEIN [variable] [/options]

Arguments: [variable] A variable to store characters read from the port; if the
variable does not previously exist, it is created.

Options: /allowall Do not strip unprintable characters; these characters are
replaced with the configured LINEIN fill character.

 /flush Flush the receive buffer before starting read.

/length=xx Maximum number of characters to receive; if not
specified the maximum of 1020 characters is used; if 0,
and either a terminating character or terminating
sequence is specified, then LINEIN accepts an unlimited
number of characters until the termination condition is
matched; all of the characters except the terminating
sequence itself are discarded.

/termchr=lf Terminate LINEIN when a line-feed is received; this
changes the default of a carriage-return terminating
character.

/termchr=none Do not use either a line-feed or carriage-return as a
terminating character.

/termseq="xxx" Terminate LINEIN when the specified termination
sequence is received.

/timeout=nn Time-out in seconds to wait for a character to be
received; the default time-out is 30 seconds.

This script command receives characters from an open COM port and saves the characters in
a string variable. The various options control how many characters are received.

This command is generally used to accept printable characters from the COM port. By default
FileLink removes any unprintable characters before they are saved in the specified variable. If
the loss of unprintable character alters the resulting string in an undesirable way by altering
character position, for example, you may use the /allowall option. When this option is used,
the relative character position of the string is preserved by replacing the unprintable characters
with the configured LINEIN fill character. The fill character defaults to a space.

By default, LINEIN terminates when a carriage-return character is received. You may alter this
behavior by using either the /termchr=lf or /termchr=none options. LINEIN also terminates if
the maximum number of characters has been received, when a user-defined string pattern is
detected, or a time-out expires.

If /termchr=none is specified and /termseq is not, LINEIN terminates after a fixed number of
characters has been received - either the number specified by the /length option or the default
value of 1020 characters.

Consider the following examples.

;; read until exactly 10 characters have been received

LINEIN comdata /termchr=none /length=10

;; read until a line-feed is received or 10 seconds elapses

LINEIN comdata /termchr=lf /timeout=10

197Script File Command Overview

2013 Serengeti Systems Incorporated

;; read until string "/end" is received or end of line

LINEIN comdata /termseq="/end"

;; read until a line-feed or semi-colon is received

LINEIN comdata /termchr=lf /termseq=";"

The following is a more specific example showing how the LINEIN command may be used to
scan incoming characters for a specific prompt. For the sake of this example, let’s assume
that the remote system sends the following banner and user name prompt immediately after a
connection is established.

Welcome to Bozo World

Home of the Funniest Clown on Earth

To chat with Bozo, please sign in

Username:

One way to handle this character sequence would be to use four LINEIN statements in the
FileLink script file. This is fine when you can be certain that the prompt is always to be found in
the fourth line. However, using a single LINEIN command, as shown below, is simpler and
more dependable since it is not dependent on knowing how many lines there will be before the
prompt appears.

LINEIN bozo /termchr=none /termseq="Username:" /timeout=30

If you are unsure of the number of characters that may be received before the prompt, or if this
number may be greater than 1020, add the /length=0 option to the command. This results in
FileLink discarding all the received characters except for the terminating sequence. It is
strongly recommended that you use the /timeout option in this case to prevent the LINEIN
command from hanging in any case where the terminating sequence is not received.

LINEIN bozo /termchr=none /termseq="Username:" /length=0 /
timeout=30

Related Command(s): FLUSH, LINEOUT, READFILE, WRITEFILE

198

2013 Serengeti Systems Incorporated

LINEOUT -- Write one or more characters to COM port

Syntax: LINELINEOUT [msg] [/options]

Alt Syntax: SENDCMD [msg] [/options]

Arguments: [msg] Variable or string defining the characters to write to the
COM port

Options: /binchr=xx Specify a binary (decimal) character, usually unprintable,
to send; not permitted with SENDCMD syntax

/flush Flush the receive buffer before writing characters to the
Port and then flush the receive buffer of characters
echoed back after the write completes

/termchr=lf Terminate the string by writing a line-feed; this changes
the default of a carriage-return terminating character; not
permitted with SENDCMD syntax

/termchr=none Do not write either a line-feed or carriage-return as a
terminating character; not permitted with SENDCMD
syntax

/timeout=xx Time-out in seconds to wait for the receive buffer to be
flushed (if /flush is specified) and/or for a character to be
written; the default time-out is 30 seconds

This script command writes characters to an open COM port. By default LINEOUT terminates
a string by writing a carriage-return character. You may alter this behavior by using either the /
termchr=lf or /termchr=none options when using the LINEOUT syntax.

The /binchr=xx option may be used to send an unprintable (binary) character either appended
to the end of the [msg] string or by itself. The xx must be a decimal value between 0 and 255.
The binary character is sandwiched between the end of [msg] string (if present) and before
the terminating character. To send the binary character by itself, the [msg] string should be
empty and /termchr=none is specified.

The /flush option performs two functions. First, it flushes the receive buffer of spurious
characters that may already be present before the write begins. Also, it flushes any characters
from the receive buffer that may be echoed back during the write after the write completes
successfully. Under certain conditions, you may want to enable this option to insure that a
subsequent LINEIN command reads any response that may be received from the remote
system rather than spurious or echoed characters to what was just written.

Consider the following examples.

;; write a carriage-return terminated string

LINEOUT "output string"

;; write a line-feed terminated string

SET string = "write this string"

LINEOUT string /termchr=lf /timeout=10

;; send Ctrl-C (hex 0x03) to the remote system

LINEOUT "" /termchr=none /binchr=3

This command is also used when sending script commands to be executed by FileLink
running on a remote system. In this case you may want to use the alternate SENDCMD syntax

199Script File Command Overview

2013 Serengeti Systems Incorporated

to make your script files more readable. Consider the following example.

;; request a specific file be sent from remote system

SENDCMD "SENDFILE ’specificfile’"

;; this command could also be written a’s

SENDCMD ’SENDFILE "specificfile"’

Note

You must use single quotation marks when embedding a script command
within an alpha-numeric string argument bracketed by double quotation marks
and vice versa.

;; either of the following cause an invalid command error

SENDCMD "SENDFILE "specific file""

SENDCMD ’SENDFILE ’specific file’’

Related Command(s): FLUSH, LINEIN, READFILE, WRITEFILE, SENDCMD, REMOTECMD

200

2013 Serengeti Systems Incorporated

LISTDIR -- List local directory to a file

Syntax: LISTDIR [dir name] [file name]

Arguments: [dir name] Optional variable or string defining a folder path name to list; if
no path is defined FileLink’s working folder is used.

 [file name] Optional variable or string defining a file name to write the
folder listing to; if no path is defined FileLink writes to a file
named "dirlist.txt" in the working folder.

This script command produces a folder listing of FileLink's working folder or a specified folder
and writes it to a file. If [file name] is not specified, FileLink creates a file in the working folder
named "dirlist.txt". The folder format written to this file is the same as might be produced using
the dir command in a DOS window.

This command is useful in creating a folder listing file. Consider the following example where a
listing file of a folder is created and sent to the remote system.

LISTDIR "\uploads*.*"

SENDFILE "dirlist.txt"

Related Command(s): MAKEDIR, WORKINGDIR

201Script File Command Overview

2013 Serengeti Systems Incorporated

LOG -- Control the script log file

Syntax: LOG [file name] | [/options]

Arguments: [file name] Optional variable or string defining a file or path name; if no
path is defined FileLink’s working folder is used.

Options: /append Specify that log data is to be appended to preexisting [file
name] (if any); if the file does not exist, it will be created.

 /maxsize=xx Specify the maximum size of the log file (in Kilobytes).

 /new Specify that a new log file name is to be created (based on the
current date and time) when this command is executed and
whenever an existing log file reaches the maximum size (if a
size has been specified).

 /off Turn script file logging off.

 /on Turn script file logging on (assuming that [file name] has been
previously defined on an earlier call to LOG or a log file has
been previously defined in the FileLink configurator).

If the [file name] argument is present, this script command creates a new script log file by this
name. It is also implied that script logging is to be turned on. The script log file records all
commands and status messages that occur during a file transfer session. This file is useful to
determine if an unattended session was successful.

The /new option instructs FileLink to create a new log file name using the current date and
time. Such a file will be created when the command is executed and, if the /maxsize option is
also specified, whenever the log file exceeds this maximum size. The [file name] argument
must be present, but it can be an empty string. FileLink takes the base file name (i.e., the part
of the file name before any extension) and appends the current date and time in the fashion
shown below. Notice that if no extension is originally specified, FileLink appends .log to the
final file name.

LOG "mylog" /new

// creates log file = mylog Wed Oct 30 15.38.43 2002.log

LOG "mylog.txt" /new

// creates log file = mylog Wed Oct 30 15.38.43 2002.txt

LOG "mylog.xx.log" /new

// creates log file = mylog Wed Oct 30 15.38.43 2002.xx.log

LOG "" /new

// creates log file = Wed Oct 30 15.38.43 2002.log

When the /new option is used the name of any newly created log file is available in the %
currentlogfile script variable.

The /maxsize option limits the maximum size that a log file can grow to. The size is specified
in kilobytes. When the maximum size is reached, FileLink handles this condition in one of two
ways. If /new is also specified, the current log file is simply closed and a new file is created
using the convention described above. If /new is not present, FileLink toggles between two

202

2013 Serengeti Systems Incorporated

files. When the first file is full, it is closed and a second created and written to. When the
second file is full, it is closed and the first file is reopened, cleared, and logging continues. This
alternating between files continues until FileLink terminates. When /maxsize is present, [file
name] is altered as shown below. Notice that if no extension is originally specified, FileLink
appends .log to the final file name.

LOG "mylog" /maxsize=100

// creates log file = mylog 1.log

// this alternates with a file to be named mylog 2.log

LOG "mylog.txt" / maxsize=100

// creates log file = mylog 1.txt

// this alternates with a file to be named mylog 2.txt

The /append option instructs FileLink to append new log data to a previously existing file
specified by [file name]. If [file name] does not exist, it will created. The /append option may
be combined with /maxsize but may not be used with the /new option.

If [file name] is omitted, the /on and /off options control logging to a previously defined log
file. When logging is turned on, new log messages are appended to the existing log file. For
example:

LOG /off

Related Command(s): LOGMSG, TRACELOG, WORKINGDIR

203Script File Command Overview

2013 Serengeti Systems Incorporated

LOGMSG -- Write a message to the script log file

Syntax: LOGMSG [message]

Arguments: [message] Variable or string containing a message to write to the script
log file.

Options: none

This script command writes a message to the script log file. Messages written in this manner
are highlighted (as are error messages) with a preceding arrow indicator to make them easier
to locate when scanning a log file.

Consider the following example.

LOGMSG "What a good thing!"

This command would produce an entry in the log file similar to the following.

Thu Oct 04 11:41:09 -- Line 5: logmsg "What a good thing!"

Thu Oct 04 11:41:18 => What a good thing!

Related Command(s): LOG

204

2013 Serengeti Systems Incorporated

LOGNTEVENT -- Write a message to the NT application event log

Syntax: LOGNTEVENT [message] [options]

Arguments: [message] Variable or string containing a message to write to the NT
application event log.

Options: /type=xx Specifies the type of event being logged. If omitted, the
default value if 1 is used.

This script command writes a message to the NT application event log. This command is not
functional when running FileLink with Windows 98.

The /type option allow the event type to be specified. The permitted event types are listed
below.

1 - Error event

2 - Warning event

3 - Information event

4 - Success Audit event

5 - Failure Audit event

Consider the following example.

LOGNTEVENT "This goes to the event log" /type=3

Related Command(s): LOG

205Script File Command Overview

2013 Serengeti Systems Incorporated

LOOPIF -- Conditional branch used in conjunction with LOOPCOUNT

Syntax: LOOPIF goto [label1] else goto [label2]

Arguments: [label1] A valid label within the current script file which is branched to if
the conditional test fails.

 [label2] A valid label within the current script file which is branched to if
the conditional test is successful.

Options: none

This script command checks the result of the previous command and performs a conditional
branch to [label1] if the command failed (the result code is non-zero). The branch to [label2]
is taken if no error was encountered.

If LOOPCOUNT is non-zero, the error path is taken LOOPCOUNT times. If the error condition
persists after taking the error path the specified number of times, then the command
immediately after the LOOPIF is executed. If LOOPCOUNT is zero, the error path is taken
indefinitely.

Consider the following where the dial command is repeated up to three times or until it is
successful (whichever comes first).

LOOPCOUNT 3

:retry_dial

DIAL "1-555-1212"

LOOPIF goto retry_dial else goto connected

;; Dialing failed

EXIT

:connected

Related Command(s): LOOPTO, GOTO, LOOPCOUNT

206

2013 Serengeti Systems Incorporated

LOOPTO -- Unconditional branch used in conjunction with LOOPCOUNT

Syntax: LOOPTO [label]

Arguments: [label] A valid label within the current script file which is branched to if
a specified number of loops has not been attained.

Options: none

This script command directions execution back to [label] and is used in conjunction with
LOOPCOUNT to execute a command or sequence of commands more than one time.

Consider the following example in which the message Wow! is transmitted three times.

LOOPCOUNT 3

:many_tries

LINEOUT "Wow!"

LOOPTO many_tries

Related Command(s): LOOPCOUNT, LOOPIF, GOTO, IFERROR

207Script File Command Overview

2013 Serengeti Systems Incorporated

LOOPCOUNT -- Set maximum loop repetition

Syntax: LOOPCOUNT [count]

Arguments: [count] Numeric count value

Options: none

This script command sets the number of times a command sequence is repeated. A command
sequence is defined with the LOOPTO and LOOPIFcommands.

Consider the following example in which the message Wow! is transmitted three times.

LOOPCOUNT 3

:many_tries

LINEOUT "Wow!"

LOOPTO many_tries

Related Command(s): LOOPTO, LOOPIF, GOTO, IFERROR

208

2013 Serengeti Systems Incorporated

MAILTO -- Send an e-mail message via default e-mail client

Syntax: MAILTO [to name] [subject] [body]

Arguments: [to name] Variable or string defining the e-mail address of recipient; to
enter the destination e-mail address within your e-mail client,
specify an empty string or issue MAILTO with no arguments

 [subject] Variable or string defining the subject line for the message; to
enter a subject line within your e-mail client, specify an empty
string or issue MAILTO with only the [to name] argument

 [body] Variable or string defining the body of the message; to enter
the body within your e-mail client, specify an empty string or
issue MAILTO with only the [to name] and [subject]
arguments

This command may be used obtain an e-mail address, subject line, and/or message body
under script control and then invoke the external system default e-mail client. The client is
launched and FileLink script continues.

The arguments are optional but if used must be in order shown above. Supply empty string(s)
as necessary if you wish to supply a subject, for example, without an e-mail address.

Line breaks may be embedded in [body] with the ‘\n’ character sequence. Not all e-mail
clients, however, recognize line breaks and may substitute a space character.

Consider the following example where the default e-mail client is launched with an e-mail
address, subject line, and message body.

SET email = "sales@acme-widget.com"

SET subj = "Thanks for your order!"

SET body = "We appreciate your business."

MAILTO email subj body

Consider the following example where only a multi-line message body is specified.

SET body = "Your password is:\n\n4ikk3433"

MAILTO "" "" body

Related Command(s): CREATEMAIL, GETMAIL, SENDMAIL

209Script File Command Overview

2013 Serengeti Systems Incorporated

MAKEDIR -- Create a new local folder

Syntax: MAKEDIR [folder name]

Alt Syntax: NEWDIR [folder name]

Arguments: [folder name] Variable or string defining the folder name to create.

Options: none

This script command creates a new local folder (also referred to as a directory). Consider the
following example in which a folder is created on the E: drive.

MAKEDIR "e:\newbie"

Folders may be created only one level at a time. For example, if you wanted to create a new
subfolder under a new folder named e:\newbie, it would require two MAKEDIR commands
as shown below:

MAKEDIR "e:\newbie\subfolder" ;;WRONG!

;; do it this way:

MAKEDIR "e:\newbie"

MAKEDIR "e:\newbie\subfolder"

Related Command(s): CHGDIR, DELDIR, WORKINGDIR

210

2013 Serengeti Systems Incorporated

MAKEFILENAME -- Create a unique, non-existent file name

Syntax: MAKEFILENAME [file name] [ext] [dir] [prefix]

Arguments: [file name] A variable where the new file name is saved.

 [ext] A variable or string defining the file name extension (if
[ext], [dir], and [base] options are omitted, .tmp is used
as the default extension).

 [dir] A variable or string defining the target folder for the file (if
[dir] and [base] are omitted, the current working folder is
used).

 [prefix] A variable or string defining the desired file name prefix; a
four digit number will be appended to the prefix to make it
unique (if omitted fl is used).

Options: none

This script command creates a unique name for a non-existent file and saves it in a specified
script variable. This variable may be used in any FileLink command that needs a uniquely
named file. The file is not created until it is used in a command.

It is not required to specify [ext], [dir], or [base], however the arguments are position
dependent, so [base] requires both [ext] and [dir] to be present, and [dir] requires [ext].

The file name returned by this command will not exist at the time the command is run, but
there is no guarantee that a file of this name will not be created by some other program, so
choose a naming combination that is unlikely to be used by any other program.

Consider the following example in which only the [file name] variable is present. The file
name created would resemble c:\program files\FileLink\flXXXX.tmp, where XXXX would be
0001, 0002, etc. depending on whether there is a previously existing file or not.

;; create a unique file name in current working folder

MAKEFILENAME newfile

Below is an example where all four arguments are present.

;; create a file named "c:\temp\mailXXXX.eml"

MAKEFILENAME newfile "eml" "c:\temp" "mail"

Related Command(s): WORKINGDIR

211Script File Command Overview

2013 Serengeti Systems Incorporated

MESSAGEBOX -- Display text in message box

Syntax: MESSAGEBOX [message] [title] [options]

Arguments: [message] Variable or string defining a text message to display within a
pop-up dialog box (up to 1000 characters).

 [title] Optional variable or string defining the window title displayed
in the dialog box.

Options: /large Select this option to display the dialog box in a larger 12
point font rather than the default 8 point.

 /local By default, FileLink displays a message box in the center of
the screen. Use this option if you wish the box to be
centered relative to the FileLink window instead.

 /nocrlf Ignore embedded \n and/or \r carriage control.

This command not allowed when running as an NT Service or in a locked minimized window.

This script command displays a dialog box on your display. The window title and text within the
dialog are specified in the command. Control returns to next script command when you close
the dialog by clicking on the OK button. This command is useful to display important
messages while a script is running.

If FileLink is running a script in a unlocked minimized window then FileLink’s window will be
restored when this command is performed.

Consider the following example.

MESSAGEBOX "This is a whiz-bang message box!"

Two embedded formatting or carriage control character sequences are recognized. A \n
sequence is interpreted as a carriage return and a \r sequence is interpreted as a line feed.
Use of this carriage control sequences permit you to display multiple lines inside a dialog box.
For example:

MESSAGEBOX " Line 1 \n\r Line 2 \n\r Line 3 "

Use of the option /nocrlf suppresses the recognition of the \n and \r sequences. This is useful
if you are displaying file names in the message box that may include either of these two
sequences. For example:

MESSAGEBOX "Sending c:\newfile\reports.dat" /nocrlf

212

2013 Serengeti Systems Incorporated

The [message] can be quite large -- up to 1000 characters. When using extremely long
messages, we suggest that you precede the command with an @ modifier to suppress the
echoing of the command to the console window and log file to preserve readability. Use care
also not to overflow the possible space in the Windows dialog box that this script command will
display by including too many embedded carriage control sequences.

The /large and /local options may not be used together.

Related Command(s): PROMPT, ASK

213Script File Command Overview

2013 Serengeti Systems Incorporated

MINIMIZE -- Minimize FileLink window

Syntax: MINIMIZE [options]

Arguments: none

Options: /hide Hide the window so that it doesn’t appear on the taskbar.

 /lock Lock FileLink minimized; its icon appears on the taskbar but
the window cannot be restored or maximized.

This command not supported when already running in a minimized window or as an NT
Service.

This script command minimizes the FileLink window to an icon.

Use of the /lock options minimizes the window such that it cannot be restored or maximized so
be sure that this is what you want to do since it cannot be undone.

Related Command(s): RESTORE

214

2013 Serengeti Systems Incorporated

MODEMCMD -- Send AT command string to modem

Syntax: MODEMCMD [cmd]

Arguments: [cmd] Variable or string defining the AT command to be sent to the
modem

Options: /enableresp Enable modem response; required if MODEMRESP script
command is going to be used to read response to the
command

This script command sends a user specified command to a Hayes compatible modem. The
link cannot be connected when issuing this command.

Consider the following example.

MODEMCMD "ATW2"

Related Command(s):MODEMRESP, MODEMDEFAULTS, MODEMRESET, DIAL, ANSWER

215Script File Command Overview

2013 Serengeti Systems Incorporated

MODEMDEFAULTS -- Set modem to factory defaults

Syntax: MODEMDEFAULTS

Arguments: None

Options: None

This script command sends an AT&F&W command to restore a Hayes compatible modem to
its factory default settings which is the recommended mode for any modem used with FileLink.
The link cannot be connected when issuing this command.

If you are using a U.S. Robotics Courier V.Everything, use the following command instead to
set factory defaults.

MODEMCMD "AT&F1&W"

Related Command(s): MODEMRESET, MODEMCMD, MODEMRESP, DIAL, ANSWER

216

2013 Serengeti Systems Incorporated

MODEMDETECT -- Locate first available modem and/or COM port

Syntax: MODEMDETECT

Arguments: None

Options: /firstportok Report success even if modem is not found; effectively
finds first COM port in system if no modem is present

This script command scans the system for the first available COM port and/or attached
modem. The result is saved in a script variable named %newport in the form “COMx” where x
is a numeric value between 1 and 48.

When MODEMDETECT is specified without an option, it attempts to find the first responsive
modem attached to one of the COM ports in your PC. If found, the port identifier (e.g., COM2)
is stored in the %newport variable. If no modem is found, the command returns an error and %
newport is set to a null string.

If the /firstportok option is included, the command returns still returns the first COM port
where a modem is found. However, it behaves differently if no modem is found by returning
the first COM port found in the system regardless whether a modem is attached or not. If no
modem nor COM port is found, the command returns an error and %newport is set to a null
string.

The following example shows how to set FileLink to use a COM port where a modem has
been detected.

MODEMDETECT

IFERROR $ERROR_NO_MODEMS_DETECTED goto no modems

USEPORT %newport

Related Command(s): MODEMRESET, MODEMCMD, MODEMRESP

217Script File Command Overview

2013 Serengeti Systems Incorporated

MODEMRESET -- Send reset to modem

Syntax: MODEMRESET

Arguments: None

Options: None

This script command sends an ATZ command to reset a Hayes compatible modem unless you
have configured a modem reset string. If a reset string is defined, it is sent instead of the ATZ
command. If the link is connected at the time of issuing this command, the link is dropped and
then the modem is reset.

Related Command(s): MODEMDEFAULTS, MODEMCMD, MODEMRESP, DIAL, ANSWER

218

2013 Serengeti Systems Incorporated

MODEMRESP -- Read modem response

Syntax: MODEMRESP [variable] [/options]

Arguments: [variable] A variable to store characters read from the modem; if the
variable does not previously exist, it is created

Options: /flush Flush the receive buffer before starting read

/length=xx Maximum number of characters to receive; if not specified
the maximum of 1020 characters is used

/timeout=nn Time-out in seconds to wait for a character to be received;
the default time-out is 3 seconds

This script command reads the response from a command sent to a Hayes compatible
modem with the MODEMCMD script command. It is not required to read the response from
the modem when a command is sent, but you may optionally use this command to confirm that
a modem is present or is properly responding to commands. The /enableresp option is
required on the MODEMCMD command prior to calling MODEMRESP.

In the following example, the variable ‘resp’ will contain the response from the modem. The
response is likely to be AT which will be the modem echoing back the command.

MODEMCMD "AT" /enableresp

MODEMRESP resp

Typically your script should continue call MODEMRESP until the three-second time-out
expires. This way you will be sure to get all of the characters of the response. So, your script
might look like the following.

; send AT command to modem

MODEMCMD "AT" /enableresp

:resp_loop

MODEMRESP resp

IFERROR= $ERROR_OPTIMEDOUT GOTO end of_resp

; do something meaningful here with the responses...

; ...

GOTO resp_loop

: end of_resp

Related Command(s):MODEMCMD, DIAL, ANSWER

219Script File Command Overview

2013 Serengeti Systems Incorporated

MOVE -- Move one local file to another location

Syntax: MOVE [src file] [dest file]

Arguments: [src name] Variable or string defining a file or path name; if no path is
defined FileLink’s working folder is used.

 [dest name] Variable or string defining a file or path name; if no path is
defined FileLink’s working folder is used.

Options: none

This script command to moves (copies and deletes) the source file to the destination location.

Full file or path names are required. For example, the following is a valid command.

MOVE "c:\test\file" "c:\test2\file"

The following is an invalid command in the same environment.

MOVE "c:\test\file" "c:\test2"

Related Command(s): APPEND, COPY, DELETE, RENAME, WORKINGDIR

220

2013 Serengeti Systems Incorporated

NATO -- Specify a no activity time-out

Syntax: NATO [timeout]

Arguments: [timeout] Variable, string, or numeric constant defining a numeric time-
out value.

Options: none

This script command specified a value, in seconds, used as for a no activity time-out during file
transmission and reception. The no activity time-out is a failsafe time-out that permits a script
file to recover if a file transfer fails abnormally yet the connection remains established.

This time-out is active only after a file transfer has begun. The /timeout option on the
SENDFILE and RCVFILE commands has priority until the first byte of data actually is sent or
received.

The no activity time-out is disabled (i.e., set to 0) by default.

Should a no activity time-out occur, it probably indicates a serious error with the connection. In
most cases, your script should issue a DISCONNECT and then reconnect or log back on
before attempting another file transfer. In some cases, you may find it necessary to attempt a
reconnection multiple times before it will be successful after a no activity time-out has
occurred.

Consider the following example in which the no activity time-out is set to 30 seconds.

NATO "30"

SENDFILE "testfile"

IFERROR= $ERROR_NO_ACTIVITY_TIMEOUT goto disconnect

221Script File Command Overview

2013 Serengeti Systems Incorporated

PAUSE -- Pause for specified length of time or until specified hour:minute

Syntax: PAUSE [options]

Arguments: none

Options: /for=xx Delay execution for xx seconds.

 /until=hh:mm Delay execution until this time-of-day (expressed in military
time).

This script command suspends the execution of a script file for a specified number of seconds
or until a specific time-of-day. More extensive scheduling capabilities are offered with the
CRON script command.

Consider the following example in which script execution is delayed until 5:00PM.

PAUSE /until=17:00

Related Commands: CRON

222

2013 Serengeti Systems Incorporated

PERFORM -- Execute script command contained in character string or
variable

Syntax: PERFORM [command]

Arguments: [command] Variable or string defining a valid FileLink script command to
be executed immediately.

Options: none

This script command takes a variable or string argument and executes it if it was an inline
script command. This command is useful to permit script commands to be passed in as a
Shortcut Target argument when FileLink is launched or obtained via the PROMPT script
command.

Consider the following example of a script file that accepts commands that you type when
prompted by FileLink. You would type the STOP or FLUSH commands to end script execution.

:loop

PROMPT var "Enter Command" "FileLink Prompt Window"

PERFORM var

GOTO loop

Consider the following example where a command is passed an argument from the Shortcut
Target command line to set the file transfer protocol to Zmodem.

"c:\FileLink\Filelink.exe" &protocol "zmodem"&

PERFORM &1

Related Commands: EXEC, PROMPT

See also Using Shortcut Target Arguments in Script Files

223Script File Command Overview

2013 Serengeti Systems Incorporated

PGPCOMMAND -- Send a "raw" GnuPG command

Syntax: PGPCOMMAND [command] [log file]

Arguments: [command] A variable or string defining the command to pass to the
GnuPG executable “gpg.exe”

 [log file] A variable or string defining the log file where commands
and responses from GnuPG (gpg.exe) are recorded when
the specified command is executed. This log file may be
used for troubleshooting; it may also be parsed by other
script commands (e.g., READFILE) to identify GnuPG
results not directly supported by FileLink.

NOTE: THIS COMMAND IS PROVIDED FOR CONVENIENCE TO EXPERIENCED GNUPG
USERS ONLY. WE DO NOT OFFER SUPPORT FOR GNUPG COMMANDS BEYOND
WHAT FILELINK DIRECTLY PROVIDES VIA THE PGPDECRYPT AND PGPENCRYPT
SCRIPT COMMANDS. USE THE PGPCOMMAND AT YOUR OWN RISK.

This script command allows "raw" GnuPG commands to be passed to "gpg.exe" (the PGP
component of FileLink) that are not directly supported by FileLink.

For example, to list the keys on your keyring, the command would be:

PGPCOMMAND "--list-keys" "gnupg.log"

To list the fingerprints, the command would be:

PGPCOMMAND "--fingerprint" "gnupg.log"

Be sure to always precede each GnuPG option with two dashes.

The results from PGPCOMMAND are written to the specified log file which is created in the
FileLink working folder (unless a fully qualified file name is provided). If you want to have
access to this information within your script, write script code using the READFILE script
command to parse this file.

For example, here is the sample output to the log file using “--fingerprint” :

040421124415076 :: ******* : END OF COMMAND

040421124508516 :: ******* : START DirectCommand

040421124508516 :: ******* : START INPUT

040421124508516 :: in : "C:\PROGRA~1\ROBO-F~1.0BE\gpg" --
fingerprint > "C:\PROGRA~1\ROBO-F~1.0BE\Logs\command.log"

040421124508516 :: ******* : END OF INPUT

040421124508576 :: ******* : Results of evaluation = 0

040421124508576 :: ******* : Results

040421124508576 :: out : c:/gnupg\pubring.gpg

pub 1024D/5F9786A6 2003-05-01 Juan Valdez <juanv@columbiacoffee.
org>

224

2013 Serengeti Systems Incorporated

 Key fingerprint = 2B96 4426 8FC0 8FFA D6A9 0412 91D3 8355
5F97 86A6

sub 2048g/5416ED79 2003-05-01

Using the READFILE command you can read the “gnupg.log” file down to the line containing
the fingerprint, use the SETRIGHT command to extract the fingerprint into a script variable if
need be.

Related Command(s): PGPDECRYPT, PGPENCRYPT, PGPIMPORT

225Script File Command Overview

2013 Serengeti Systems Incorporated

PGPDECRYPT -- Decrypt a PGP encrypted file

Syntax: PGPDECRYPT [encrypt file] [target file] [keyring] [options]

Arguments: [encrypt file] A variable or string defining the file name of the PGP
encrypted file to decrypt; this file may or may not be ASCII
armored. Wildcard characters are not permitted in
[encrypt file] or [target file].

 [target file] A variable or string defining the file name of the decrypted
file; if the file exists, it will be overwritten. If an empty string
is provided (i.e., “”) then the decrypted file is written to the
original file name saved when the file was encrypted.

 [keyring] Optional variable or string defining the location of the PGP
keyring used in the decryption; if omitted, FileLink expects
the keyring file to be in the current working folder.

Options: /gpglog=xx Include this option if you wish to define a log file where
commands and responses from GnuPG (gpg.exe) are
recorded during the decryption process. This log file may be
used for troubleshooting; it may also be parsed by other
script commands (e.g., READFILE) to identify GnuPG
results not directly supported by FileLink.

 /gpgopt=xx Any GnuPG (gpg.exe) decryption option not implemented
by FileLink and therefore must be explicitly specified (e.g., --
skip-verify). This option should only be used by advanced
users and/or under the direction of FileLink technical
support.

 /pw=xx The PGP key Passphrase field associated with the PGP key
to be used in the decryption; if you have only one key on
your keyring and you saved the Passphrase field when
creating or selecting the key using the FileLink configurator,
you may omit this option.

This script command decrypts a file encrypted using PGP encryption. Files may have been
encrypted using the FileLink PGPENCRYPT script command or any other PGP or GPG
encryption application.

To decrypt a file, you must have an existing keyring containing your private key and have
imported the public key of the originator of the file. You must specify your passphrase either
within the command itself using the /pw option or by previously specifying it when creating or
selecting a key using the FileLink configurator.

Below is a decryption example where the passphrase has been previously defined and the
keyring file exists in the FileLink working folder.

PGPDECRYPT "encrypted.txt.gpg" "decrypted.txt"

You can also write the decrypted file to a different folder as shown below.

PGPDECRYPT "encrypted.txt.gpg" "c:\new\decrypted.txt"

If you haven’t saved the passphrase when creating the keyring then you will need to provide
the passphrase on the PGPDECRYPT command as shown below.

226

2013 Serengeti Systems Incorporated

PGPDECRYPT "encrypted.txt.gpg" "decrypted.txt" /pw="my
passphrase"

Important

FileLink secures your passphrase by saving it in an encoded format in the
Windows registry along with its other settings. The passphrase is also never
displayed in the FileLink console window nor written to any log file. But be
aware that it does appear in clear-text in a script file. Therefore, the method of
specifying your passphrase during configuration is the most secure.

The original file name of an encrypted file is often embedded within the decrypted file. FileLink
allows an encrypted file to be automatically set to this name and saved in the current working
folder by using the following syntax (Note: the [target file] is an empty string).

PGPDECRYPT "encrypted.txt.gpg" ""

Important

FileLink has no way of knowing what the original embedded file name is. If you
use this option, you must know in advance what the file name is if you intend to
perform other actions on the resulting decrypted file from within the FileLink
script environment.

For advanced troubleshooting, you may include the /gpglog option which results in commands
and responses to and from GnuPG (gpg.exe) being written to the specified log file. (GnuPG is
the underlying PGP encryption/decryption engine used by FileLink.) The following example
encrypts a file and writes to a log file named “encrypt.log”.

PGPDECRYPT "encrypted.txt.gpg" "decrypted.txt" /gpglog="encrypt.
log"

If a fully qualified file name is not specified, the log file will be created in the current FileLink
working folder. If the file exists, it will be appended to. Delete the file before each
PGPDECRYPT command if you want only a single command to be logged.

In some cases you may be required to decrypt a file using a GnuPG option that is not directly
implemented by FileLink. In such cases, the /gpgopt option allows you to specify the
necessary option(s) in the PGPDECRYPT command and have it passed to GnuPG. The
following example encrypts a file and specifies an unsupported option.

PGPDECRYPT "encrypted.txt.gpg" "decrypted.txt" /gpgopt="--skip-
verify"

Multiple GnuPG options may be passed using /gpgopt. When doing so, separate each
complete option with a semi-colon as shown below.

PGPDECRYPT ... /gpgopt="--skip-verify;--no-verbose"

Be sure to always precede each GnuPG option with two dashes.

Related Command(s): PGPENCRYPT, PGPIMPORT

227Script File Command Overview

2013 Serengeti Systems Incorporated

228

2013 Serengeti Systems Incorporated

PGPENCRYPT -- Encrypt a file using PGP

Syntax: PGPENCRYPT [src file] [target file] [keyring] [options]

Arguments: [src file] A variable or string defining the file name of the PGP
encrypted file to encrypt. Wildcard characters are not
permitted in [src file] or [target file].

 [target file] A variable or string defining the file name of the newly
encrypted file; if the file existed, it will be overwritten.

 [keyring] Optional variable or string defining the location of the PGP
keyring used in the encryption; if omitted, FileLink expects
the keyring file to be in the current working folder.

Options: /armor Select this option to ASCII armor the [target file].

 /gpglog=xx Include this option if you wish to define a log file where
commands and responses from GnuPG (gpg.exe) are
recorded during the encryption process. This log file may be
used for troubleshooting; it may also be parsed by other
script commands (e.g., READFILE) to identify GnuPG
results not directly supported by FileLink.

 /gpgopt=xx Any GnuPG (gpg.exe) encryption option not implemented
by FileLink and therefore must be explicitly specified (e.g., --
force-v3-sigs). This option should only be used by advanced
users and/or under the direction of FileLink technical
support.

 /comment=xx The PGP key Comment field on your keyring associated
with the PGP key of the recipient of the encrypted file; this
option may not be necessary if enough information is
provided via the /email and/or /user options to uniquely
identify the recipient’s key on your public keyring. The
comment specified must completely match the Comment
field in the keyring.

 /email=xx The PGP key E-mail Address field on your keyring
associated with the PGP key of the recipient of the
encrypted file; this option may not be necessary if enough
information is provided via the /comment and/or /user
options to uniquely identify the recipient’s key on your public
keyring. The e-mail address specified must completely
match the E-mail Address in the keyring.

 /pw=xx The passphrase associated with the private key on your
keyring necessary when using the /sign option; if a
passphrase was not saved when the key was created or
when a keyring was selected using the FileLink Configurator
then this option is required when the /sign option is
specified so that the encrypted file can be digitally signed;
otherwise the passphrase saved at configuration time is
used if present.

 /sign Select this option if you wish to digitally sign the file using
your own public key.

 /textmode Select this option if you wish to have [target file] saved in a
text mode format.

 /user=xx The PGP key User Name field on your keyring associated
with the PGP key of the recipient of the encrypted file; this
option may not be necessary if enough information is
provided via the /comment and/or /email options to
uniquely identify the recipient’s key on your public keyring.
The user name may be a full or partial match with the User
Name field in the keyring if /user option is used without /

229Script File Command Overview

2013 Serengeti Systems Incorporated

comment and /email. It must be a complete match if either
or both of the /comment or /email options are used.

.

This script command encrypts a file using PGP encryption. Files may be decrypted using the
FileLink PGPDECRYPT script command or any other PGP or GPG encryption application.

To encrypt a file, you must have an existing keyring containing the private key you wish to use.
(If you have multiple private keys on a given keyring, FileLink will always use the first key.) You
must also have the public key of the recipient of the file on the keyring and use the /user, /
comment, and/or /email options to specify all or part of the key ID for it to be identified.

Use the /armor option if you wish the resulting file to be in ASCII armored format.

Use the /sign option if you wish the resulting file to be digitally signed.

Use the /textmode option if you wish the resulting file to be a text mode format.

When signing an encrypted file, you must specify your passphrase either within the command
itself using the /pw option or by previously specifying it when creating or selecting a key using
the FileLink configurator.

Important

FileLink secures your passphrase by saving it in an encoded format in the
Windows registry along with its other settings. The passphrase is also never
displayed in the FileLink console window nor written to any log file. But be
aware that it does appear in clear-text in a script file. Therefore, the method of
specifying your passphrase during configuration is the most secure.

It is typical for encrypted files to have an extension of .gpg (except where noted below). In
most of the examples below, we add this extension at the end of the original file to create the
name of the encrypted version of the file. We recommend that you adopt these conventions as
well.

Original File Name: "datafile.txt"

Encrypted File Name: "datafile.txt.gpg"

For ASCII armored files (see below):

Original File Name: "datafile.txt"

Encrypted File Name: "datafile.txt.asc"

In the example below a file is encrypted using a public key on the default keyring that is
identified by a user name of “Dick Tracy”.

PGPENCRYPT "datafile.txt" "datafile.txt.gpg" /user="Dick Tracy"

In the example below, more of the key ID is specified.

230

2013 Serengeti Systems Incorporated

PGPENCRYPT "datafile.txt" "datafile.txt.gpg" /user="Dick Tracy" /
email=dick@detective.com

The following example encrypts a file and specifies the keyring is in an alternate location.

PGPENCRYPT "datafile.txt" "datafile.txt.gpg" "c:\gnupg" /
user="Dick Tracy"

The following example encrypts a file and specifies the output format to be ASCII armored.
(The .asc extension is typically used for these types of files.)

PGPENCRYPT "datafile.txt" "datafile.txt.asc /user="Dick Tracy" /
armor

The following example encrypts a file and digitally signs it.

PGPENCRYPT "datafile.txt" "datafile.txt.gpg" /user="Dick" /sign /
pw="my passphrase"

Important

When encrypting a file, PGP requires the public key of the recipient so that only
the recipient may decrypt the file. The recipient’s public key must be present on
your keyring at the time of encryption. Keys are imported to your keyring by way
of the PGPIMPORT script command or by using the Manage Key functionality
in the FileLink configurator.

For advanced troubleshooting, you may include the /gpglog option which results in commands
and responses to and from GnuPG (gpg.exe) being written to the specified log file. (GnuPG is
the underlying PGP encryption/decryption engine used by FileLink.) The following example
encrypts a file and writes to a log file named “encrypt.log”.

PGPENCRYPT "datafile.txt" "datafile.txt.gpg" /user="Dick" /
gpglog="encrypt.log"

If a fully qualified file name is not specified, the log file will be created in the current FileLink
working folder. If the file exists, it will be appended to. Delete the file before each
PGPENCRYPT command if you want only a single command to be logged.

In some cases you may be required to encrypt a file using a GnuPG option that is not directly
implemented by FileLink. In such cases, the /gpgopt option allows you to specify the
necessary option(s) in the PGPENCRYPT command and have it passed to GnuPG. The
following example encrypts a file and specifies an unsupported option.

"datafile.txt" "datafile.txt.gpg" /user="Dick" /gpgopt="--force-
v3-sigs"

Multiple GnuPG options may be passed using /gpgopt. When doing so, separate each
complete option with a semi-colon as shown below.

231Script File Command Overview

2013 Serengeti Systems Incorporated

PGPENCRYPT ... /gpgopt="--force-v3-sigs;--no-verbose"

Be sure to always precede each GnuPG option with two dashes.

Related Command(s): PGPDECRYPT, PGPIMPORT

232

2013 Serengeti Systems Incorporated

PGPIMPORT -- Import a PGP key

Syntax: PGPIMPORT [key file] [keyring]

Arguments: [key file] A variable or string defining the file name of an exported key to
import; if there is more than one key on the keyring FileLink will
import only the first key.

 [keyring] Optional variable or string defining the location of the PGP
keyring to import into; if omitted, FileLink expects the keyring
file to be in the current working folder.

Options: None

This script command imports a PGP key file exported from a FileLink keyring or from another
PGP or GPG encryption package. This command requires that a keyring previously exist.

The following example imports a key present in FileLink’s working folder.

PGPIMPORT "export_key.gpg"

The following example imports a key into a keyring present in the specified folder.

PGPIMPORT "export_key.gpg" "c:\gnupg"

Related Command(s): PGPDECRYPT, PGPENCRYPT

233Script File Command Overview

2013 Serengeti Systems Incorporated

PLAYSOUND -- Play a sound (.wav) file

Syntax: PLAYSOUND [file name]

Arguments: [file name] Variable or string defining a file or path name; if no path is
defined FileLink’s working folder is used.

Options: none

Play the specified sound (.wav) file. This may useful to indicate the completion of different
events.

234

2013 Serengeti Systems Incorporated

PRESSANYKEY -- Suspend script execution pending a key press

Syntax: PRESSANYKEY

Arguments: none

Options: none

Suspend script execution pending the pressing of any key on the system keyboard.

235Script File Command Overview

2013 Serengeti Systems Incorporated

PRINT -- Print a file

Syntax: PRINT [file name] [ptr name]

Arguments: [file name] Variable or string defining a file or path name; if no path is
defined FileLink’s working folder is used.

 [ptr name] Variable or string defining the destination printer (e.g., HP
LaserJet 4).

Options: None

This command sends the specified file to a printer. Printing files other than text files is not
recommended. Script file execution resumes when the file has been completely accepted by
Print Manager.

The [ptr name] used in the PRINT command is different depending on whether the target
printer is locally attached or attached via a network.

To determine the [ptr name] of a local printer on Windows XP, double click on Start | Control
Panel | Printers and Faxes. You will see a display similar to the following:

This shows two printers by the names of HP LaserJet4 and HP LaserJet 4000 available to
your system. HP LaserJet4 is a local printer (and the current default printer designated by the
check mark) and HP LaserJet 4000 is a shared (i.e., network) printer (designated by the “wire
node” printer icon).

The PRINT command is shown below prints to the local printer:

PRINT "myfile" "HP LaserJet 4"

Determining the [ptr name] of a shared network printer is more complicated. With shared
printers, the name is a combination of the hosting computer, and the printer name and is in the
form \\<hosting computer>\<printer name>.

Under Windows XP, for example, double click on Start | Control Panel | Printers and Faxes,
then right click on the shared HP LaserJet 4000 printer and select Properties, and finally click
the Sharing tab. You will see something like the following:

236

2013 Serengeti Systems Incorporated

The [ptr name] to use is a combination of the computer name where the printer is physically
attached (i.e., CHAMPLIN) and the name of the printer shown in the Share Name field. In this
case the corresponding command to print to a shared printer would be:

PRINT "myfile" "\\CHAMPLIN\HPLaserJ"

Related Command(s): WORKINGDIR

237Script File Command Overview

2013 Serengeti Systems Incorporated

PROMPT -- Display message box with title and prompt, and accept user
input

Syntax: PROMPT [variable] [message] [title]

Arguments: [variable] A variable to store characters typed in the prompt dialog; if the
variable does not previously exist, it is created.

 [message] Variable or string defining a text message to display within a
pop-up dialog box; this message is limited to up to three lines
of text approximately 50 characters each.

 [title] Variable or string defining the window title displayed in the
dialog box.

Options: /history=on When this option is used the last ten responses you type are
saved for instant recall. (This history is shared with console
command mode.) This option is not permitted with the /
password option.

/history=off When this option is used no history will be saved.

 /large Select this option to display the dialog box in a larger 12 point
font rather than the default 8 point.

 /local By default, FileLink displays a message box in the center of the
screen. Use this option if you wish the box to be centered
relative to the FileLink window instead.

 /nocrlf Ignore embedded \n and/or \r carriage control.

 /password Select this option if you are prompting for a password and you
do not want what is typed to be readable. This option is not
permitted along with the /history option.

This command not allowed when running as an NT Service or in a locked minimized window.

This script command displays a dialog box on your display. The window title and text within the
dialog are specified in the command. Control returns to next script command when you close
the dialog by clicking on the OK or Cancel buttons. This command is useful to prompt for file
names or other information that is not static during the course of a file transfer session.

If FileLink is running a script in a unlocked minimized window then FileLink’s window will be
restored when this command is performed.

The script file can detect if the Cancel button has been clicked by testing for result code 1013
or the $ERROR variable $ERROR_PROMPT_CANCELLED.

Related Commands: MESSAGEBOX, ASK

See also: Running FileLink With Prompting

238

2013 Serengeti Systems Incorporated

PROTOCOL -- Specify default file transfer protocol

Syntax: PROTOCOL [protocol] [/options]

Arguments: [protocol] A variable or string defining the desired file transfer protocol
for the next file send or receive operation; valid protocols
are:

ASCII

Kermit

Xmodem

Xmodem1K

Ymodem

Zmodem

Options: /compress=off Turn off compression when using Kermit protocol

/compress=on Turns on compression when using Kermit protocol

 /no_acks Do not send positive acknowledgements when receiving
files when using the Xmodem1K or Ymodem protocols
(called the G option)

/overwrite=xx File over-write control on remote system for files sent by
FileLink using the Zmodem protocol; replace xx with one of
the following:

Always always over-write existing file

Append append to existing file

Diff over-write if file sizes/dates are different

New over-write only if newer

None use remote system’s default

Newlong over-write only if newer or longer

Protect over-write only if file does not exist

 /recovery=on Enable crash recovery when using the Zmodem protocol

/recovery=off Turns off recovery when using the Zmodem protocol

 /rxsize=xxx Specify the default receive (Rx) buffer size used by FileLink
for the selected COM port. The default value is 8192. The
allowable range for this is 4096 to 32,767 bytes

 /txsize=xxx Specify the default transmit (Tx) buffer size used by FileLink
for the selected COM port. The default value is 8192. The
allowable range for this is 4096 to 32,767 bytes

 /use_checksum Use additive checksum block check algorithm when using
Xmodem or Xmodem1K protocol

 /width=7 Use 7-bit data characters when using Kermit protocol

/window=on Turns on window mode when using the Zmodem protocol

 /window=off Turn off sliding window mode when using the Zmodem
protocol

 /windowsize=xxx Specify the sliding window size used by FileLink for the
Zmodem protocol. The default value is 4096. The allowable
range for this is 512 to 16,383 bytes. In general this window
size should not be changed as this may prove to be
unacceptable by the remote system; the Zmodem buffer
size may not exceed either the Tx or Rx buffer sizes; (in
previous versions this option was named either /buffersize
or /zrxsize)

239Script File Command Overview

2013 Serengeti Systems Incorporated

This script command defines the file transfer protocol to use on subsequent file transfer
operations - both send and receive. The selection made in this command overrides the default
selections set with the FileLink Configurator.

Consider the following example where the file transfer protocol is set to Zmodem of a script file
that prompts you the name of next file to send to the remote system.

PROTOCOL "zmodem" /overwrite=Always /recovery=on

Changing the Rx, Tx, or Zmodem buffer sizes is usually not necessary. However, in some
cases, especially when poor connections are a problem, file transfer reliabilty may benefit from
the use of smaller buffer sizes. This is best determined via trial and error.

Related Commands: USEPORT

240

2013 Serengeti Systems Incorporated

RCVFILE -- Receive one or more files

Syntax: RCVFILE [file name] [/options]

Arguments: [file name] Optional variable or string defining a file or path name; if no
path is defined FileLink’s working folder is used

Options: /flush Flush the receive buffer before starting a receive file
operation.

 /fullpath If the protocol used allows the sender to define the name of
the file received, use the full path name received (not just the
name of the file).

/nostatus Do not display send file status dialog box

 /striplf In ASCII file transfers only, remove line-feeds from before
writing data to a file

 /timeout=xx Time-out in seconds to wait for a receive file operation to
start; if xx is 0, FileLink waits indefinitely

 /zwriteblock Do not receive data while doing file writes (Zmodem protocol
only); use only if connected at high speed and transmission
errors occur

This script command prepares FileLink to receive one or more files from the remote system.

The [file name] argument is required when one of the following file transfer protocols is used:

ASCII

Xmodem

Xmodem1K

In the cases of the other protocols, the [file name] argument is optional. If it is omitted, the
remote system determines the name of file. The /fullpath option controls if the remote system
also control over which directory the file is written to. If the [file name] argument is present, it
overrides the name sent by the remote system.

When using a protocol that permits the remote system to supply the file name, it is possible
multiple files may be sent in a single RCVFILE command. You must not override the remote
file naming feature under such circumstances - namely, do not use the [file name] argument.

Consider the following example where FileLink waits one minute to receive a file from the
remote system using the Zmodem protocol. Note that [file name] is not specified since the
remote system specifies the local file name.

PROTOCOL "zmodem" /overwrite=Always /recovery=on

RCVFILE /timeout=60

When [file name] is not specified, the name of the last file received is saved in the %lastfile
variable. When a wildcard is used to transfer multiple files, the number of files received is
stored in the %rcvfilecount variable.

Related Command(s): SENDFILE, PROTOCOL, LINEIN, LINEOUT, WORKINGDIR

See also: Using the %lastfile Variable

241Script File Command Overview

2013 Serengeti Systems Incorporated

242

2013 Serengeti Systems Incorporated

READFILE -- Read string variable value from text file

Syntax: READFILE [file name] [variable] [/options]

Arguments: [file name] A variable or string to specify the file name to read; if no
Path is defined FileLink’s working folder is used.

 [variable] A variable to store characters read from the file; if the
variable does not previously exist, it is created.

Options: /allowall Do not strip unprintable characters; these characters are
replaced with the configured LINEIN fill character.

 /length=xx Maximum number of characters to read; if not specified the
maximum of 1020 characters is used.

 /record=xx The specific record number to read; records are delimited by
carriage-return/line-feed pairs.

 /record=next Read the next sequential record; records are delimited by
carriage-return/line-feed pairs.

 /termchr=lf Terminate the read when a line-feed is received; this
changes the default of a carriage-return terminating
character.

 /termchr=none Do not use either a line-feed or carriage-return as a read
terminating character; any unprintable characters read are
replaced with the configured LINEIN fill character.

 /termseq="xxx" Terminate the read when the specified termination
sequence is read.

This script command reads characters from a specified text file. This command is oriented
toward reading complete records of printable characters from a file with each record
terminated by a carriage-return/line-feed (CR/LF). The carriage-return/line-feed are not
returned in the [variable] string.

IMPORTANT

All records in the file including the last must be terminated by CR/LF.

The scope of this command (and the WRITEFILE command) is not to provide full function file
I/O to your script files, but rather to provide temporary storage for small amounts of information
for use by a script file or an external program.

Under control of command options, reads of character strings not bounded by carriage-return/
line-feeds are possible. For example, records of fixed lengths can be read by using the /
length=xx and /termchr=none options.

In a READLINE command where /termchr=none and /termseq="xx" are defined, the
command returns an error if the specified terminating string is not located within /length
number of characters (if specified) or within the default of 1020 characters. An empty string is
also returned. This provides an easy way to determine if the desired terminating sequence is
present or not. The record number used in association with the /record=next option is only
incremented when there a match if found and the read completes successfully

When the /record=xx option is used to read beyond the first record of the file, keep in mind
the terminating options in the READFILE command apply to all records. Record numbering
begins at one. For example, if you are using the /termseq="end" option to stop reading when
the string end is read, all records must end with this pattern.

243Script File Command Overview

2013 Serengeti Systems Incorporated

The /record=next option allows a file to be read sequentially as long as the specified file name
is constant - namely, only one file can be read at a time using this option.

To rewind a file (or resume reading from the first record), issue the READFILE command
without any arguments (returns no data), specify a different file name, omit the /record=next
option, or specify /record=1.

FileLink removes any unprintable characters read before they are saved in the specified
variable. If the loss of unprintable character alters the resulting string in an undesirable way by
altering character position, for example, you may use the /allowall option. When this option is
used, the relative character position of the string is preserved by replacing the unprintable
characters with the configured LINEIN fill character. The fill character defaults to a space.

Consider the following examples.

;; "rewind" the file

READFILE

;; read the first record of a file

READFILE "datafile" first_record

;; read until a line-feed is found

READFILE "datafile" file_record /termchr=lf

;; read the third record of a file

READFILE "datafile" third_record /record=3

;; read 500 characters

READFILE "datafile" my_string /length=500 /termchr=none

Related Command(s): WRITEFILE, LINEIN, LINEOUT, WORKINGDIR

244

2013 Serengeti Systems Incorporated

REMOTECMD -- Perform a script command received via a COM port

Syntax: REMOTECMD [options]

Arguments: none

Options: /flush Flush the receive buffer before starting read.

 /timeout=nn Time-out in seconds to wait for a command to be received;
the default time-out is 30 seconds.

This script command reads characters from an open COM port in exactly the same manner as
the LINEIN command. Rather than saving the characters in a variable, the characters are
assumed to form a valid FileLink script command. REMOTECMD then does the equivalent of
a PERFORM command on the character string.

For more information on how the characters are read see the description of the LINEIN
command.

Consider the following example.

;; accept and perform a remote command

REMOTECMD /timeout=10

This is equivalent to the following command sequence:

LINEIN var /timeout=10

PERFORM var

Related Command(s): LINEIN, LINEOUT, SENDCMD, PERFORM

245Script File Command Overview

2013 Serengeti Systems Incorporated

RENAME -- Rename a file

Syntax: RENAME [file name1] [file name2]

Arguments: [file name1] Variable or string defining a file or path name; if no path is
defined FileLink’s working folder is used.

 [file name2] Variable or string defining a file name.

Options: None

This script command renames [file name1] to [file name 2].

Related Command(s): COPY, APPEND, DELETE, WORKINGDIR

246

2013 Serengeti Systems Incorporated

RESTORE -- Restore minimized FileLink window to original size

Syntax: RESTORE

Arguments: none

Options: none

This command not supported when running as an NT Service.

This script command restores the FileLink window to its original size after the MINIMIZE
command is executed or if FileLink was originally loaded to run minimized.

Related Command(s): MINIMIZE

247Script File Command Overview

2013 Serengeti Systems Incorporated

RESUME -- Resume script execution from a breakpoint

Syntax: RESUME

Arguments: none

Options: none

This command is intended to be used from the console command line during debugging to
resume script execution with the next statement following a BREAK command. (re)run the
currently selected script file. This command has the same effect as clicking the Skip To Next
Command (Ctrl + N) button on the toolbar.

The RESUME command is not supported as a command within a script file itself - it is only for
use from the console command line during script debugging.

Related Command(s): BREAK, GO, STOP

See also: Debugging Script Files

248

2013 Serengeti Systems Incorporated

RETURN -- Return from a called script file or function

Syntax: RETURN [retcode]

Arguments: [retcode] Optional Variable or numeric value specifying a function return
code (valid only within a function body).

Options: None

This script command is used to exit from a called script file or from a function, and resume
script execution at the next command from the point of the call.

If the RETURN command appears in a main script (i.e., a script that is not called from another
script) or a chained to script (see CALL and CHAIN), then its behavior is identical to the STOP
script command.

Use of the RETURN command is not always required. For example, it is not required in the
following case.

BEGINFUNCTIONS

FUNCTION MyFunction

;; body of MyFunction

RETURN

ENDFUNCTION

ENDFUNCTIONS

When there are no more script commands in a function to execute, the RETURN command is
assumed as shown below.

BEGINFUNCTIONS

FUNCTION MyFunction

;; body of MyFunction

ENDFUNCTION

ENDFUNCTIONS

This also applies to called script files. At the end of file of a called script file, a RETURN is
assumed.

When used to return from a function, an optional parameter permits there to be a return code
from the function. The returned value may be tested using any of the IFERROR script
commands and is saved in the %lasterror script variable. The return code must be numeric
otherwise a return code = 0 is assumed. The following is an example of testing for a function
return code equal to 1.

FUNCTION MyFunction

;; body of MyFunction

RETURN 1

;; call the function

MyFunction

249Script File Command Overview

2013 Serengeti Systems Incorporated

IFERROR 1 GOTO function_ok

In complicated called script files or functions, multiple return points may be desired. For
example, the RETURN command may be used as shown in the rather sloppily written function
below.

BEGINFUNCTIONS

FUNCTION MyFunction afile

:top

RCVFILE afile

IFERROR= $ERROR_SUCCESS GOTO success

;; return on error

RETURN

:success

MESSAGEBOX "a file received"

ASK "Receive again?" "Question"

IFYES goto top

RETURN

ENDFUNCTION

ENDFUNCTIONS

Related Command(s): BEGINFUNCTIONS, ENDFUNCTION, ENDFUNCTIONS, FUNCTION

250

2013 Serengeti Systems Incorporated

SENDCMD -- Send script command (same as LINEOUT)

Optional syntax for the LINEOUT command that may be used when sending script commands
to remote system running FileLink.

Related Command(s): REMOTECMD

251Script File Command Overview

2013 Serengeti Systems Incorporated

SENDFILE -- Send one or more files

Syntax: SENDFILE [file name] [/options]

Arguments: [file name] Variable or string defining a file or path name; if no path is
defined FileLink’s working folder is used; wildcard characters
are permitted in the file name itself (not the path name
portion) as long as the file name conforms to the 8.3 file
naming convention; wildcard characters not supported when
using ASCII, Xmodem, or Xmodem1K protocols

Options: /archive Move [file name] to the designated archive folder after a
successful transmission

 /delete Delete [file name] after it has been successfully sent; local
folders are not deleted

 /flush If the protocol used allows the sender to define the name of
the file on the remote system, send the full path name (not
just name of the file)

 /fullpath If the protocol used allows the sender to define the name of
the file on the remote system, send the full path name (not
just name of the file)

 /iflarger In Zmodem file transfers only, do not overwrite the host or
remote file if it is smaller than, or the same size as, the file
being sent from the local PC

/ifnewer In Zmodem file transfers only, do not overwrite the host or
remote file if the file date and time is newer than, or the same
as, the file being sent from the local PC

/ifnotexist In Zmodem file transfers only, do not overwrite a host or
remote file of the same name if it already exists

/nostatus Do not display send file status dialog box

/timeout=xx Time-out in seconds to wait for a send file operation to start;
if xx is 0, FileLink waits indefinitely

This script command sends one or more files to the remote system.

The protocols listed below automatically send the name of each file to the remote system in a
preceding header block. This permits the receiver to automatically create a file with the same
name as the original.

Kermit

Ymodem

Zmodem

When using one of these file transfer protocols, multiple files may be sent by using wildcard
characters (*, ?) in the [file name]. Consider the following example in which all the files in a
particular directory are sent to the remote system using the Zmodem protocol.

PROTOCOL "zmodem"

SENDFILE "c:\My Data*.*" /timeout=30

The Kermit file transfer protocol does not specify a way to wait for the transfer to complete.
Instead, the receiving side simply receives however much data is sent in the window of time
allotted for receiving files.

252

2013 Serengeti Systems Incorporated

When a wildcard is used to transfer multiple files, the number of files sent is stored in the %
sendfilecount variable.

The following protocols do not support the sending of more than one file in a single SENDFILE
command nor the use of wildcards.

ASCII

Xmodem

Xmodem1K

Note

Automatic transmission of multiple files may be accomplished with these
protocols using the GETNEXTFILE command and a conditional looping
structure within a script file.

The /archive option automatically moves a local file to an archive folder defined using the
ARCHIVEDIR script command after it has been successfully sent. If a file by the same name
exists in the archive folder, it is overwritten.

The /delete option automatically deletes a local file after it has been successfully sent.

The /iflarger, /ifnewer, and /ifnotexist options may be used to control if host or server files
are to be overwritten when sent by FileLink. These options are supported by Zmodem
transfers only. These options are mutually exclusive. When using the /ifnewer option, the
determination of the newest file is based on a comparison of the time and date each file was
last written to. The file write time comparison is based only on the hour and minute.

The /archive option automatically moves a local file to an archive folder defined using the
ARCHIVEDIR script command after it has been successfully sent. If a file by the same name
exists in the archive folder, it is overwritten.

Related Command(s): RCVFILE, LINEIN, LINEOUT, PROTOCOL, WORKINGDIR

253Script File Command Overview

2013 Serengeti Systems Incorporated

SENDMAIL -- Send an e-mail message

Syntax: SENDMAIL [server] [to name] [to email] [/options]

Arguments: [server] Variable or string defining the server URL or IP address (e.g.,
smtp.mail.server or 209.198.128.17) of a SMTP mail server;
the server port is always set to 25

 [to name] Variable or string defining the recipient

 [to email] Variable or string defining e-mail address recipient

Options: /pw=xx Define optional password to use when logging on to the mail
server (omit if not required by the SMTP server)

 /user=xx Define optional user name to use when logging on to the mail
server (omit if not required by the SMTP server)

 /timeout=nn Time-out, in seconds, to wait for message to be sent (if omitted
the time-out is set to 30 seconds)

This command sends an e-mail message previously created with the CREATEMAIL command
via a SMTP e-mail server. All of the arguments to this command are required, however [to
name] may be an empty string.

The same message is sent each time SENDMAIL is called unless CREATEMAIL is called
again to change the message.

Consider the following example where an e-mail message is created and then sent.

;; create the message

SET from = "Serengeti Sales"

SET email = "sales@serengeti.com"

SET subj = "Thanks for your order!"

SET body = "We appreciate your business."

SET attach = ""

CREATEMAIL from email subj body attach

;; send the message

SENDMAIL "120.33.13.10" "Joe Blow" "joeb@smithco.com"

Consider the following example where authentication is required on the SMTP server.

SET server = "smtp.mail.server"

SET to = "Ray Johnson"

SET email = "rjj@laugh-in.com"

SENDMAIL server to email /user=smtpid /pw=smtppw

Related Command(s): CREATEMAIL, GETMAIL

254

2013 Serengeti Systems Incorporated

SET -- Assign or concatenate string variable(s)

Syntax: SET [variable] = [value] [& value2] [& value3] [& value4]

Alt Syntax: SET [variable] [&= value]

Arguments: [variable] Variable to assign; if the variable does not previously exist it is
created.

 [value] Variable or string defining the value to assign to [variable] or
the first concatenation string when followed with the
concatenation operator.

 & The catenation operator; + is also recognized.

 [value2] Variable or string defining the optional second string to
concatenate to [value] with result stored in [variable].

 [value3] Variable or string defining the optional third string to
concatenate to [value] & [value2] with result stored in
[variable].

 [value4] Variable or string defining the optional fourth string to
concatenate to [value] & [value2] & [value3] with result
stored in [variable].

 [&= value] Variable or string value to concatenate to [variable] with result
stored in [variable] when the alternate concatenation syntax is
used.

Options: none

This script command assigns a string value to a variable or concatenates up to four strings
and assigned the resulting string to a variable.

Consider the following examples:

;; assign a variable to a string

SET new_string = "this is a new string"

;; assign a variable to a previously assigned variable

SET another_string = new_string

;; concatenate two strings

SET hello_world = "hello " & "world"

;; concatenate four variables

SET var1 = "FileLink "

SET var2 = "is "

SET var3 = "the "

SET var4 = "greatest."

SET truth = var1 & var2 & var3 & var4

;; concatenate two strings (alternate syntax)

SET hello_world = "hello "

SET hello_world &= "world"

255Script File Command Overview

2013 Serengeti Systems Incorporated

Related Command(s): INC, DEC, SETLEFT, SETRIGHT, SETMID

See also: Script File Variable Arguments

256

2013 Serengeti Systems Incorporated

SETEXTRACT -- Extract delimited substring from a string

Syntax: SETEXTRACT [variable] = [string] [delim] [num]

Arguments: [variable] Variable to assign; if the variable does not previously exist it
is created.

 [string] Variable or string defining the value from which the substring
is to be extracted.

 [delim] Variable or string defining the delimiter that separates sub-
strings within [string].

 [num] Variable, string, or numeric constant defining the occurrence
of delimited substring to extract.

Options: none

This script command extracts the specified occurrence [num] of a delimited substring
(excluding the delimiters themselves) from [string] and saves the result in [variable]. The
delimiter may be one or more characters and is specified in [delim].

The beginning and end of [string] are seen as delimiters.

Consider the following example.

;; extract "is" from string

SET string = "this is a string"

;; "is" is the 2nd occurrence delimited by space (" ")

SETEXTRACT substring = string " " 2

;; substring now contains "is"

;; extract extension from file name of unknown size

;; for example, file name could be:

;; file.ext

;; file.file1.ext

;; file.file1.file2.ext

SETSUBSTR depth = filename "."

SETNUM depth = depth + 1

SETEXTRACT extension = filename "." depth

;; extension now contains "ext"

Related Command(s):SET, SETRIGHT, SETLEFT, SETLEN, SETMID, SETSUBSTR

257Script File Command Overview

2013 Serengeti Systems Incorporated

SETLEFT -- Extract left substring

Syntax: SETLEFT [variable] = [value] [cnt] [/options]

Arguments: [variable] Variable to assign; if the variable does not previously exist it is
created.

 [value] Variable or string defining the value from which the substring is
to be extracted.

 [cnt] Variable, string, or numeric constant defining the length of the
substring; this value must resolve to a numeric value less than
or equal to the length of [value].

Options: /split Save the unextracted portion of the string back in [value].

This script command extracts the leftmost [cnt] characters from [value] and saves the result
in [variable].

If the /split option is specified, the unextracted portion of [variable] is assigned back to
[variable] replacing the original value.

Consider the following example.

;; assign a variable to a string

SET string = "this is a string"

;; extract the leftmost 4 characters

SETLEFT substring = string "4"

The resulting substring variable contains the value "this". The original string variable is
unchanged.

Consider the same example using the /split option.

;; assign a variable to a string

SET string = "this is a string"

;; extract the leftmost 4 characters

SETLEFT substring = string "4" /split

The resulting substring variable contains the value "this" and the original string variable
has be reassigned to " is a string".

Related Command(s):SET, SETRIGHT, SETMID

258

2013 Serengeti Systems Incorporated

SETLEN -- Assign length of specified string to a variable

Syntax: SETLEN [variable] = [string]

Arguments: [variable] Variable to assign; if the variable does not previously exist it is
created.

 [string] Variable or string to get the length of.

Options: none

This script command obtains the length of [string] and saves the result in [variable].

Consider the following example.

;; assign a variable to a string

SET string = "this is a string"

;; get the length of the string

SETLEN len = string

;; len will be equal to 16

Related Command(s):SET, SETEXTRACT, SETRIGHT, SETLEFT, SETMID, SETSUBSTR

259Script File Command Overview

2013 Serengeti Systems Incorporated

SETMID -- Extract mid substring

Syntax: SETMID [variable] = [value] [cnt] [at]

Arguments: [variable] Variable to assign; if the variable does not previously exist it is
created.

 [value] Variable or string defining the value from which the substring is
to be extracted.

 [cnt] Variable, string, or numeric constant defining the length of the
substring; this value must resolve to a numeric value less than
or equal to the length of [value].

 [at] Variable, string, or numeric constant defining the position in
[value] where the substring extraction is to begin; the first
character in a string is at position 1.

Options: none

This script command extracts [cnt] characters from within [value] beginning with character
number [at] and saves the result in [variable].

Consider the following example.

;; assign a variable to a string

SET string = "this is a string"

;; extract 2 characters from mid-string starting at character #6

SETMID substring = string "2" "6"

The resulting substring variable contains the value "is".

Related Command(s):SET, SETRIGHT, SETLEFT

260

2013 Serengeti Systems Incorporated

SETNUM -- Assign or evaluate numeric variable(s)

Syntax: SETNUM [variable] = [num1] [op] [num2]

Arguments: [variable] Variable to assign; if the variable does not previously exist it is
created.

 [num1] Variable, string, or numeric constant defining the numeric
value to assign to [variable] or the first value to evaluate
arithmetically with [value2] based on the numeric operator
defined by [op].

 [op] The arithmetic operator: + (addition), - (subtaction), x
(multiplication), or / (division).

 [num2] Variable, string, or numeric constant defining the second value
to evaluate arithmetically with [value1] based on the numeric
operator defined by [op].

Options: none

This script command performs basic integer arithmetic on variables or strings containing
numeric values (e.g., digits 0 - 9) or numeric constants, and assigns the resulting numeric
value to a variable. The command results in a syntax error if either [num1] or [num2] are
non-numeric. The SETNUM command differs from the SET command in that SET does not
limit the variable to contain only numeric digits (e.g., 0 - 9).

Consider the following examples.

;; assign a numeric constant to a variable

SETNUM num = 100

;; assign a previously assigned variable to a variable

SETNUM num = other_num

;; add two variables

SETNUM num = var1 + var2

;; add two numeric constants

SETNUM num = 100 + 100

;; following syntax is equivalent

SETNUM num = "100" + "100"

;; add/subtract/multiply/divide constant and a variable

SETNUM num = other_num + 100

SETNUM num = othernum - 100

SETNUM num = other_num x 100

SETNUM num = other_num / 100

Important

The multiplication operator is ‘x’ (lower-case letter x) and not the expected
‘*’ (asterisk) character. This is because script file comments can begin with an
asterisk.

261Script File Command Overview

2013 Serengeti Systems Incorporated

If a numeric variable is to be used in file naming, or other string related operations, where a
known string length (with leading zeroes) is desired, the SETNUM command (and INC and
DEC commands) may be used as shown below.

;; leading zeroes are preserved when enclosed in quotes

SETNUM num = "001"

INC num

;; after incrementing, the result is "002"

DEC num

;; after decrementing, the result returns to "001"

Note: Leading zeroes are lost if any other arithmetic operation is performed and saved to the
num variable.

Related Command(s):DEC, INC, IFNUM, SET

See also: Performing Variable Arithmetic and Numeric Comparisons

262

2013 Serengeti Systems Incorporated

SETRIGHT -- Extract right substring

Syntax: SETRIGHT [variable] = [value] [cnt] [/options]

Arguments: [variable] Variable to assign; if the variable does not previously exist it is
created.

 [value] Variable or string defining the value from which the substring is
to be extracted.

 [cnt] Variable, string, or numeric constant defining the length of the
substring; this value must resolve to a numeric value less than
or equal to the length of [value].

Options: /split Save the unextracted portion of the string back in [value].

This script command extracts the rightmost [cnt] characters from [value] and saves the
result in [variable].

If the /split option is specified, the unextracted portion of [variable] is assigned back to
[variable] replacing the original value.

Consider the following example.

;; assign a variable to a string

SET string = "this is a string"

;; extract the rightmost 6 characters

SETRIGHT substring = string "6"

The resulting substring variable contains the value "string". The original string variable is
unchanged.

Consider the same example using the /split option.

;; assign a variable to a string

SET string = "this is a string"

;; extract the rightmost 6 characters

SETRIGHT substring = string "6" /split

The resulting substring variable contains the value "string" and the original string variable
has be reassigned to "this is a ".

Related Command(s):SET, SETLEFT, SETMID

263Script File Command Overview

2013 Serengeti Systems Incorporated

SETSUBSTR -- Find number of substrings in string

Syntax: SETSUBSTR [variable] = [string] [substr]

Arguments: [variable] Variable to assign; if the variable does not previously exist it is
created.

 [string] Variable or string defining the value of string from which to
obtain the delimiter count.

 [substr] Variable or string defining the delimiter string to search for
within [string]. A delimiter can be one or more characters in
length.

Options: None

This script command searches [string] for occurences of [substr] and saves the number of
occurences found in [variable].

Consider the following examples.

;; find the number of file name segments

SET filename = "data.temporary.sbc.xml"

;; find how many "." occur

SETSUBSTR dots = filename "."

;; dots will be equal to 3 (segments equals dots + 1)

;; determine if file name has an extension

SETSUBSTR dots = filename "."

IFNUM= dots 0 goto no_extension

Related Command(s):SET, SETEXTRACT, SETRIGHT, SETLEFT, SETLEN, SETMID

264

2013 Serengeti Systems Incorporated

SNAPSHOT -- Take a “snapshot” of the local PC file system

Syntax: SNAPSHOT [path] [dbfile] [/options]

Arguments: [path] Optional Variable or string defining the starting local path from
which to take a “snapshot” of the file system; if omitted, the
current working folder is used and [dbfile] defaults to
“snapshot_local.sql”.

 [dbfile] Optional Variable or string defining an alternative to the default
“snapshot_local.sql” database file used to save the snapshot.

Options: /incldirs Take a snapshot of the current or specified folder and all
subfolders thereunder.

This script command is used in conjunction with the DIFF and GETDIFF script commands to
locate individual file differences (i.e., change in size, date/time stamp) within a specified folder
(and optional subfolder) tree within the local PC file system.

SNAPSHOT is the first step to establish a baseline (or “snapshot”) of the specified folder(s)
from which to determine if any file(s) change. Details about files found are saved in an SQL
database file. The database file name defaults to “snapshot_local.sql” but you may name it
anything you like via the [dbfile] argument.

As long as unique and consistent [dbfile] arguments are specified, FileLink supports as many
separate snapshots as you wish.

Consider the following example which takes a snapshot of the current working folder and any
subfolders.

SNAPSHOT "*.*" /incldirs

In most cases SNAPSHOT need only be run once. Future changes detected in the file system
by the DIFF command are automatically updated in the database file unless FileLink is
specifically told not to do so.

The total number of files examined in the local PC file system is saved in the %snapshotfiles
script variable.

Related Command(s): DIFF, DIFFREWIND, GETDIFF

265Script File Command Overview

2013 Serengeti Systems Incorporated

SPEAKER -- Control modem speaker mode

Syntax: SPEAKER [/options]

Arguments: None

Options: /on Turn speaker on until carrier is detected

/off Leave speaker off at all times

/always_on Leave speaker on at all times

This script command controls the speaker mode of an internal or external Hayes compatible
modem.

Related Command(s): DIAL, ANSWER

266

2013 Serengeti Systems Incorporated

SRVNAME -- Define service name and control interaction with SrvMonitor

Syntax: SRVNAME [name] | [/options]

Arguments: [path] Optional variable or string defining the service name of this
FileLink instance for identification by the SrvMonitor applet.

Options: /launch Launch SrvMonitor after defining a service name.

 /off Turn monitoring off.

This command defines the service name of the current FileLink session so that it can be
identified when SrvMonitor (a Windows desktop tray applet) is started. This command is
provided as an alternative to the -t command line switch.

SrvMonitor is a separate utility that permits running FileLink session(s) to be monitored by
any user when FileLink has been launched as an NT service or when it is otherwise running
hidden in the background. See Monitoring a FileLink Service for more information.

If FileLink has been installed as a NT service by SrvInstaller, then use of this command is not
necessary unless you wish to disable monitoring via the /off option. When launched by
SrvInstaller, the identification string used by SrvMonitor is set to the service name specified
when the service is created.

The following command defines a service name and enables FileLink interaction with
SrvMonitor. The name specified will appear in SrvMonitor windows and/or menus to identify
this instance of FileLink.

SRVNAME "MyFileLink"

The following command defines a service name and automatically launches SrvMonitor. This
option is not allowed if FileLink is running as an NT service.

SRVNAME "MyFileLink" /launch

The following command disables FileLink interaction with SrvMonitor. Interaction may be
restored by (re)issuing the previous command.

SRVNAME /off

267Script File Command Overview

2013 Serengeti Systems Incorporated

STOP -- Stops script processing

Syntax: STOP

Arguments: None

Options: None

This script command ends script processing. The action is the same as clicking the Stop
button on the FileLink toolbar or pressing the (Esc) key while a script file is executing.

If FileLink is running in a minimized window (i.e., as an icon) or as an NT service when STOP
is executed, the action is the same as executing the EXIT command - namely, FileLink
terminates.

Related Command(s): EXIT

268

2013 Serengeti Systems Incorporated

TERMINAL -- Activate Terminal applet

Syntax: TERMINAL

Arguments: None

Options: None

This command not supported when running in a minimized window or as an NT Service.

This script command suspends script processing and activates the FileLink TTY Terminal
applet. The action of this command is the same as clicking on the Start TTY Terminal Applet
on the FileLink toolbar. You may switch freely between the TTY Terminal applet and the
FileLink script environment.

Each environment shares the same communications session, so you may connect to or
disconnect from the remote system, for example, from either a script file or from within the
TTY Terminal applet. The same set of configuration settings apply to both environments.

The TTY Terminal applet is useful to understand how a communications session with a
particular remote system takes place so that it can be automated with a script file.

See also: Using the FileLink TTY Terminal Applet

269Script File Command Overview

2013 Serengeti Systems Incorporated

TRACELOG -- Control the trace log file

Syntax: TRACELOG [file name] | [/options]

Arguments: [file name] Optional variable or string defining a file or path name; if no
path is defined FileLink’s working folder is used.

Options: /append Specify that trace data is to be appended to preexisting [file
name] (if any); if the file does not exist, it will be created.

 /maxsize=xx Specify the maximum size of the trace log file (in Kilobytes).

 /new Specify that a new trace log file name is to be created (based
on the current date and time) when this command is executed
and whenever an existing trace log file reaches the maximum
size (if a size has been specified).

 /off Turn trace logging off.

 /on Turn trace logging on

If the [file name] argument is present, this script command creates a new trace log file by this
name. It is also implied that logging is to be turned on. The trace log file records trace and
diagnostic messages that may be helpful in troubleshooting file transfer failures.

The /new option instructs FileLink to create new trace file name using the current date and
time. Such a file will be created when the command is executed and, if the /maxsize option is
also specified, whenever the trace file exceeds this maximum size. The [file name] argument
must be present, but it can be an empty string. FileLink takes the base file name (i.e., the part
of the file name before any extension) and appends the current date and time in the fashion
shown below. Notice that if no extension is originally specified, FileLink appends .log to the
final file name.

TRACELOG "trace" /new

// creates trace file = trace_Wed Oct 30 15.38.43 2002.log

TRACELOG "trace.txt" /new

// creates trace file = trace_Wed Oct 30 15.38.43 2002.txt

TRACELOG "trace.xx.log" /new

// creates trace file = trace_Wed Oct 30 15.38.43 2002.xx.log

TRACELOG "" /new

// creates trace file = Wed Oct 30 15.38.43 2002.log

The /maxsize option limits the maximum size that a trace file can grow to. The size is
specified in kilobytes. When the maximum size is reached, FileLink handles this condition in
one of two ways. If /new is also specified, the current trace file is simply closed and a new file
is created using the convention described above. If /new is not present, FileLink toggles
between two files. When the first file is full, it is closed and a second created and written to.
When the second file is full, it is closed and the first file is reopened, cleared, and logging
continues. This alternating between files continues until FileLink terminates. When /maxsize is
present, [file name] is altered as shown below. Notice that if no extension is originally
specified, FileLink appends .log to the final file name.

TRACELOG "trace" /maxsize=100

270

2013 Serengeti Systems Incorporated

// creates trace file = trace_1.log

// this alternates with a file to be named trace_2.log

TRACELOG "trace.txt" / maxsize=100

// creates trace file = trace_1.txt

// this alternates with a file to be named trace_2.txt

The /append option instructs FileLink to append new trace log data to a previously existing file
specified by [file name]. If [file name] does not exist, it will created. The /append option may
be combined /maxsize but may not be used with the /new option.

If [file name] is omitted, the /on and /off options control logging to a previously defined log
file. When logging is turned on, new log messages are appended to the existing log file. For
example:

TRACELOG /off

Related Command(s): LOG, WORKINGDIR, TRACEWIN

271Script File Command Overview

2013 Serengeti Systems Incorporated

TRACEWIN -- Activate/deactivate trace window

Syntax: TRACEWIN [/options]

Arguments: None

Options: /off Deactivate and remove trace window.

 /on Activate and display trace window.

This command not supported when running as an NT Service.

When testing script commands, it is often helpful to activate the FileLink Trace Window. The
contents of this window mirror what is written to the trace log file. For example, characters read
from and written to a COM port with the LINEIN and LINEOUT commands respectively, are
echoed to the trace window giving you an immediate, visual record of what is occurring on the
communications link.

Consider the following example where the trace window shows the results of LINEIN and
LINEOUT commands on a COM port.

The script command name, the number of characters sent or received, enclosed in (..), and
the characters themselves are shown in the window.

The contents of the trace window can be copied to the Clipboard by accessing the System
menu (by clicking on the icon in the upper left corner of the window) and then selecting Copy
to Clipboard. This is useful if you need to save the contents of the trace window for later
examination.

272

2013 Serengeti Systems Incorporated

Related Command(s): TRACELOG

273Script File Command Overview

2013 Serengeti Systems Incorporated

UNZIP - Extract file(s) from a zip archive

Syntax: UNZIP [zip name] [path] [file] [/options]

Arguments: [zip name] A variable or string defining the file name of the zip archive; if .
zip extension is omitted, FileLink adds it automatically; if no
folder is specified, FileLink creates or opens the archive in its
working folder.

 [path] A variable or string defining the path to the target folder to
where files are to be extracted; if no path name is specified,
FileLink uses the current working folder. If specified, this folder
must exist.

 [file] A variable or string defining the file name(s) to be extracted.

Options: /pw=xx Define password used when the zip archive was created.

 /skipexisting Do not extract files from the archive that already exist in the
target path.

 /skipolder Do not extract files from the archive that are older than, or
have the same date and time as existing files in the target
path.

 /subdirs Use folder names stored in the archive; if this option is not
selected, all files will be extracted to [path] regardless of path
information saved in the archive.

This script command extracts file(s) from an existing zip archive file. Upon completion of the
command, the %unzipcount script variable contains the total number of files unzipped by this
command.

Consider the following example in which a single file is extracted to FileLink’s working folder.

UNZIP "zipfile" "" "mydata.xml"

The example below extracts all the .xml files in the specified archive to FileLink’s working
folder.

UNZIP "zipfile" "" "*.xml"

The example below extracts all the .xml files in the specified archive to FileLink’s working
folder and into subfolders that may have been saved in the archive. Relative path names of
any files found in the archive are restored.

UNZIP "zipfile" "" "*.xml" /subdirs

The example below extracts a file named index.html from a password protected archive
and saves in a target folder named c:\mysite.

UNZIP "zipfile" "c:\mysite" "index.html" /pw=mysecret

The example below extracts all newer files in the specified archive to the specified target
folder.

274

2013 Serengeti Systems Incorporated

UNZIP "c:\temp\archive.zip" "c:\my files" "*.*" /skipolder

If you have multiple file to unzip, the example below shows a loop that gathers zip files, one by
one, from the current folder and extracts all files in the specified archive to the specified target
folder.

:loop

GETNEXTFILE "*.zip" /timeout=10

;; branch if no more zip files

IFERROR $ERROR_WAIT_TIMED_OUT goto nofile

UNZIP %nextfile "c:\myfiles" "*.*"

GOTO loop

:no_file

Related Command(s): WORKINGDIR, ZIP

275Script File Command Overview

2013 Serengeti Systems Incorporated

USEPORT -- Specify COM port and/or port settings

Syntax: USEPORT [port] | [/options]

Arguments: [port] Optional variable or string defining the COM port;
COM1through COM48 are supported by FileLink; if
this argument is omitted, the options apply to the
current COM port

Options: /baudrate=xx Set the baud rate of the communications link; replace
xx with one of the following:

 1200

 4800

 9600

 14400

 19200

 28800

 33600

 38400

 57600

 115200

/carrier=xx Set the carrier setting of the communications link;
replace xx with one of the following:

 Constant

 Ignore

 Switched

/flowconrtrol=xx Set the flow control setting of the communications
link; replace xx with one of the following:

 None

 Both

 Hardware

 Xon/Xoff

/parity=xx Set the parity of the communications link; replace xx
with one of the following:

 Even

 Mark

 None

 Odd

 Space

/stopbits=x Set the number of stop bits used on the
communications link; replace xx with one of the
following:

 1

 2

/wordlength=x Set the number of data bits per character used on the
communications link; replace x with one of the
following:

 7

 8

276

2013 Serengeti Systems Incorporated

This script command defines the COM port and/or port settings to be used by FileLink. If the
line is not connected, the COM port and settings apply the next time the communications port
is opened. If the line is connected, the settings take effect immediately. Changing the COM
port itself when the line is connected is prohibited.

The selection made in this command overrides any default selections set with the FileLink
Configurator. If the specified COM port has not be previously configured, default settings for
the port are created. Not all configuration options must be supplied with the USEPORT
command - when omitted, the selection set at configuration time is used.

Consider the following example where COM2 is selected and configured.

USEPORT "COM2" /baudrate=28800 /parity=none /wordlength=8

Consider the following example where the baud rate of the current port is changed.

USEPORT /baudrate=9600

The following example restores the default settings for COM2.

USEPORT "COM2"

Related Commands: PROTOCOL

277Script File Command Overview

2013 Serengeti Systems Incorporated

WORKINGDIR -- Specify default working folder

Syntax: WORKINGDIR [folder name]

Alt Syntax: CHGDIR [folder name]

 CD [folder name]

Arguments: [path name] A variable or string to specify the path name of FileLink’s
default folder.

Options: None

This script command defines the default folder for all file oriented script commands. Anytime a
file name is specified in a command without a full path associated with it, FileLink either
searches for or creates this file in the designated working folder. The selection made in this
command overrides the default selection set with the FileLink configurator.

The current working folder is always maintained in the %currentlocaldir variable.

Consider the following example.

;; read record in "c:\Program Files\FileLink\example.txt"

WORKINGDIR "c:\Program Files\FileLink"

READLINE "example.txt" first_record

If a partial path is specified, it and the previous working folder are used to define the new
working folder.

;; current working folder is "c:\Program Files\FileLink"

WORKINGDIR "test"

;; new working folder is now "c:\Program Files\FileLink\test"

If “..” is specified, the new working folder is set one folder above the previous working folder.

;; current working folder is "c:\Program Files\FileLink"

WORKINGDIR ".."

;; new working folder is now "c:\Program Files"

Caution

The directory change made by WORKINGDIR is global within the FileLink
script environment. If WORKINGDIR is going to called in a function or a called
script, it is always recommended that the current working folder be saved on
entry and restored on exit if it is going to be changed. See the description of
the %currentlocaldir variable for an example of this.

Related Command(s): ARCHIVEDIR, MAKEDIR

278

2013 Serengeti Systems Incorporated

WRITEFILE -- Write character string or string variable value to text file

Syntax: WRITEFILE [file name] [string_out] [/options]

Arguments: [file name] A variable or string to specify the file name to write to; if no
path is defined FileLink’s working folder is used; if the file
does not exist, it is created.

 [string_out] A variable or string to be written to the file.

Options: /append Append the string to the existing file.

/hex Interpret the output string as a hexadecimal value rather than
as standard ASCII characters. Use this option if you need to
write binary data.

This script command writes characters to the specified text file. This command is oriented
toward writing a complete record of printable characters, terminated by a carriage-return/ line-
feed, to a file. The scope of this command (and the READFILE command) is not to provide full
function file I/O to your script files, but rather to provide temporary storage for small amounts
of information for use by a script file or an external program.

By default WRITEFILE either creates a new file or over-writes an existing file with what is
written. You may use the /append option add records an existing file.

Consider the following example.

;; write a string received from the COM port to a file

LINEIN user_id /timeout=0

WRITEFILE "user_info.txt" user_id /append

Note: The %crlf internal variable is available for adding additional line breaks to your output
string.

Related Command(s): READFILE, LINEIN, LINEOUT, WORKINGDIR

279Script File Command Overview

2013 Serengeti Systems Incorporated

ZIP -- Create or add to a zip archive

Syntax: ZIP [zip name] [file] [/options]

Arguments: [zip name] A variable or string defining the file name of the zip archive;
if .zip extension is omitted, FileLink adds it automatically; if
no folder is specified, FileLink creates or opens the archive
in its working folder.

 [file] A variable or string defining the folder or file name(s) to add
to the zip archive; if no path name is specified, FileLink
assumes [file] is in the current working folder.

Options: /compress=xx Select the compression mode for the zip archive; options
are /compress=none (files are stored in the zip archive but
not compressed); /compress=fast (archive file is created
as quickly as possible but file may not be as small as it
could be); /compress=normal; /compress=max (archive
file is made as small as possible but may take longer to
create).

 /create Create a new zip archive each time; any existing archive file
named [zip name] will be deleted and recreated.

/encryption=xx Select the encryption method. The default encryption
method is XEM compatible. You can also specify /
encryption=AES to use AES encrypion. AES offers a more
secure algorithm, though it can increase the time it takes to
compress the file. Also /encryption=none can be used to
not encrypt. Note that the encryption setting is ignored it no
password is specified.

 /fullpath Save the fully qualified path or folder names of files as they
are stored in the zip archive.

 /pw=xx Define a password to protect the files added to the the zip
archive.

 /subdirs Add files in subfolders beneath [zip name] to the zip
archive; [zip name] must be a folder or a path containing a
wildcard pattern for this option to be accepted.

This script command creates a zip archive file from the file or files. A new archive file may be
created each time or file(s) may be added to an existing archive.

Upon completion of the command, the %zipcount script variable contains the total number of
files zipped by this command.

Consider the following example in which a single file is zipped into a new archive. The resulting
archive file is named zipfile.zip and is located in FileLink’s working folder.

ZIP "zipfile" "mydata.xml" /create

The following example adds another file to the same archive.

ZIP "zipfile" "mydata2.xml"

The example below adds all the .xml files in FileLink’s working folder to an existing password
protected archive.

280

2013 Serengeti Systems Incorporated

ZIP "zipfile" "*.xml" /pw=mysecret

The example below adds all the .xml files in FileLink’s working folder and in any subfolders to
an existing archive. Relative path names of any files found in subfolders are saved in the
archive.

ZIP "zipfile" "*.xml" /subdirs

The example below stores (but does not compress) all the files in FileLink’s working folder and
in any subfolders in a new archive. Relative path names of any files found in subfolders are
saved in the archive.

ZIP "c:\temp\archive.zip" "*.*" /subdirs /compress=none /create

Related Command(s): UNZIP, WORKINGDIR

Sample Script Files

See the sample scripts listed below.

Simple Async Dial-Up Connection

Simple Async Dial-Up Connection With Error Recovery

Dial-Up Connection Performing a Logon

There are also two functional script files provided with FileLink:

prompt.s script to provide interactive control where you can type script commands to be
executed

ssitest.s script to conduct prearranged test with Serengeti Systems

281Sample Script Files

2013 Serengeti Systems Incorporated

Simple Async Dial-Up Connection

The example script file shown below attempts to dial up to three times. Once connected, it
sends a file named 'login'. If the send file completes normally, the script file waits for a single
file from the remote system. Once a file is received, or the RCVFILE command times out, the
script file disconnects and exits.

LOOPCOUNT 3

:dial_loop

DIAL "1-555-1212"

LOOPIF goto dial_loop else goto connect

EXIT

:connect

SENDFILE "login"

IFERROR goto sendfail

RCVFILE /timeout=60

:sendfail

DISCONNECT

EXIT

282

2013 Serengeti Systems Incorporated

Simple Async Dial-Up Connection With Error Recovery

This example builds on the previous one and adds some error recovery and reporting. As
before, once connected, it sends a file named 'login'. If the send file completes normally, a
second file is sent. If it is also sent successfully, the script file waits for a single file from the
remote system. Once a file is received, or if the receive command times out, the script file
disconnects and exits.

DIAL "1-512-555-1212"

;; check for connection

IFERROR= $ERROR_CONNECT_TIMEOUT goto connect_timeout

;; check for line busy

IFERROR= $ERROR_BUSY_SIGNAL goto line_busy

;; just exit if any other error

IFERROR goto exit

;; send two files in a row

SENDFILE "login" /timeout=30

;; check for send time-out

IFERROR= $ERROR_OPTIMEDOUT goto xmt_timeout

SENDFILE "accounts"

;; wait for host reply

RCVFILE "newdata" /timeout=60

DISCONNECT

:exit

EXIT

:connect_timeout

MESSAGEBOX "**ATTENTION: Cannot connect, dial time-out"

EXIT

:line_busy

MESSAGEBOX "**ATTENTION: Line is busy"

EXIT

:xmt_timeout

MESSAGEBOX "**ATTENTION: Remote unable to receive"

DISCONNECT

EXIT

283Sample Script Files

2013 Serengeti Systems Incorporated

Dial-Up Connection Performing a Logon

In this example, a common sequence of performing a remote logon (being prompted for and
sending a user ID and a password) in an async modem environment is shown.

DIAL "555-1212" /timeout=60

;; check for connection

IFERROR!= $ERROR_SUCCESS goto Exit

;; Accept a character string command from the remote system

;; (assuming that a prompt for a user name is expected)

;; (we don't really care what this string is)

LINEIN cmdvariable /flush /timeout=60

IFERROR= $ERROR_SUCCESS goto Operation2

GOTO Disconnect

:Operation2

;; Send a user name or ID string to the remote system

LINEOUT "username" /flush /timeout=60

IFERROR= $ERROR_SUCCESS goto Operation3

GOTO Disconnect

:Operation3

;; Accept a character string command from the remote system

;; (assuming that a prompt for a password is expected)

;; (we don't really care what this string is either)

LINEIN cmdvariable /flush /timeout=60

IFERROR= $ERROR_SUCCESS goto Operation4

GOTO Disconnect

:Operation4

;; Send a password string to the remote system

LINEOUT "password" /flush /timeout=60

IFERROR= $ERROR_SUCCESS goto Operation5

GOTO Disconnect

:Operation5

;; here the script might send or receive a file

;; or perform other required operations

. . .

:Disconnect

DISCONNECT

:Exit

EXIT

284

2013 Serengeti Systems Incorporated

Dial-In Connection With Authorization

In this example, FileLink is acting as host for remote dial-in users in an async modem
environment. FileLink prompts for and verifies the user name and password of the caller.

ANSWER /timeout=0

;; check for connection

IFERROR!= $ERROR_SUCCESS goto Exit

;; Prompt for user name and wait 60 seconds for a response

LINEOUT "Enter your user name:" /flush

LINEIN username /flush /timeout=60

IFERROR= $ERROR_SUCCESS goto Operation2

GOTO Disconnect

:Operation2

;; Validate that the user name is one we recognize

;; Authorization records have been pre-created in "authfile.txt"

AUTHUSER username "authfile.txt"

IFERROR= $ERROR_AUTHORIZATION_FAILED goto Disconnect

;; User was found in authorization file

;; Prompt for password and wait 60 seconds for a response

LINEOUT "Enter your password:" /flush

LINEIN password /flush /timeout=60

IFERROR= $ERROR_SUCCESS goto Operation3

GOTO Disconnect

:Operation3

;; Validate that the password for this user

AUTHPW username password "authfile.txt"

IFERROR= $ERROR_AUTHORIZATION_FAILED goto Disconnect

;; Password matched for this user

;; Send predefined greeting #1 to this user

AUTHDATA username greeting "1" "authfile.txt"

LINEOUTLINEOUT greeting /flush

:Operation4

;; here the script might send or receive a file

;; or perform other required operations

. . .

:Disconnect

DISCONNECT

:Exit

EXIT

In this example, an entry in the authorization file might look like this:

benfrankin,bennyf,Thanks for calling

285Installing FileLink as an NT Service

2013 Serengeti Systems Incorporated

Installing FileLink as an NT Service

FileLink may be installed as an NT Service under Windows NT, 2000, and XP. Services are
not supported under Windows 98 or ME.

You must have administrator privileges you install the FileLink Service.

An NT Service is a background process which is loaded by the Service Control Manager of the
Windows kernel. They are often loaded at bootup, before any user logs in, and are often
independent of any specific user being logged on at the time. If a service is not launched
automatically by the system at boot time, as many services are, it can also be manually
launched by a user at the console, via the Windows Control Panel Services tool (under
Administrative Tools using Windows 2000 and XP), or by another program which interfaces
to Window’s Service Control Manager.

The SrvInstaller utility is installed along with FileLink. It is installed into the Windows Control
Panel under the name FileLink Service Installer and it may also be found in the Start menu
grouped with other FileLink components. This utility is used to install, optionally start, and to
stop and/or remove the FileLink Service.

The SrvMonitor utility is also installed along with FileLink. SrvMonitor is a Windows desktop
tray applet that any user can use to monitor the status of a running FileLink service. See
Monitoring a FileLink Service.

A script file must be specified when running FileLink as a Service. The FileLink Service
remains active as long as the script file permits it to. The STOP and EXIT commands stop the
script and terminate the FileLink Service. Furthermore, unless you have selected the Interact
with desktop option, interactive script commands such as ASK and PROMPT are not
permitted.

A typical deployment of FileLink as a Service would probably have a script that runs
continuously. Such a script file would use, for example, the CRON command to trigger one or
more regularly scheduled activity, or use the GETNEXTFILE command to signal a new
operation is to be initiated.

Important

It is strongly recommended that you fully test any script file that
you intend to run using FileLink as a normal application program
before using it with a Service.

If the FileLink Service is not started at installation time, you use the Windows Control Panel
Services tool (under Administrative Tools using Windows 2000 and XP) to start the Service,
or you should restart Windows (assuming that you selected Automatically as the Start Service
Now method).

It is recommended that you use the Service installation utility SrvInstaller to stop and remove
the FileLink Service rather than using the Windows Control Panel Services tool (under
Administrative Tools using Windows 2000 and XP).

286

2013 Serengeti Systems Incorporated

Unlike other NT Services, the FileLink Service does not log all results and errors to the System
Event Log. Instead, you should use the FileLink log file to monitor operation of a FileLink
Service that does not interact with the desktop.

The main screen of the SrvInstaller utility is shown below. Click on the fields within image
below for more information.

287Installing FileLink as an NT Service

2013 Serengeti Systems Incorporated

Shutting Down a Running FileLink Service

Using the Stop/Remove Service function of SrvInstaller has been mentioned elsewhere as
the proper way of shutting down a FileLink Service. This always works but it does not always
result in a clean and orderly termination when a communications session is in progress. This
requires some special attention during the creation of script files used by the FileLink Service.

The idea is to have the script regularly monitor for the presence of a special shutdown script. If
it becomes necessary to terminate the FileLink Service, this shutdown script would be copied
to a designated folder, the FileLink Service detects its presence, and transfers control to it
using the CHAIN script command at an appropriate time. Then the stop may be issued from
SrvInstaller.

The shutdown script, we’ll name the file "shutdown.s", might look like the following:

; FileLink Service shutdown script

DISCONNECT

EXIT Script_Commands_(QUIT)CONNECT

Your production script file(s) are obviously application dependent, but any script used with a
FileLink Service should continuously loop looking for something to do. The GETNEXTFILE
command is often used to monitor a folder for a file to transmit, so we’ll use this construct to
demonstrate how to use a shutdown script.

;; FileLink Service production script

:top

;; look for any file in current folder

GETNEXTFILE "*.*" /timeout=10

;; branch if 10 seconds elapsed

IFERROR $ERROR_WAIT_TIMED_OUT goto nofile

;; branch on any other error

IFERROR goto some_error

;; connect with remote system

CONNECT

;; send the file we just found

SENDFILE %nextfile
;; disconnect from remote

DISCONNECT

;; loop back to next file to send

GOTO top

:no_file

;; branch if no shutdown script

IFNFILE "shutdown.s" goto top

;; transfer to shutdown script

CHAIN "shutdown.s"

:some_error

. . .

288

2013 Serengeti Systems Incorporated

Obviously there are other ways to skin this cat, but the important thing is to have the FileLink
Service execute a DISCONNECT and/or EXIT commands prior having the Service stopped
using SrvInstaller. This permits the FileLink Service to perform an orderly disconnect (if
necessary) and termination of a FileLink communication session.

Monitoring a FileLink Service

The SrvMonitor utility, a Windows desktop tray applet, is provided with FileLink to provide a
way to monitor the operation of FileLink when it is being run as an NT service (which normally
has no interaction with a user desktop) or when it is being run minimized or otherwise hidden
from view.

SrvMonitor provides the following real-time information for a user interested in what FileLink
is doing:

Ø Currentt state (e.g., idle, sending a file)

Ø Currently active script file

Ø Current line number of the active script

Ø Scrolling messages issued by FileLink to the unseen console and trace windows

SrvMonitor identifies an instance of FileLink by a unique character string identifier known as
a service name. FileLink is given a service name in one of three ways:

1. Via the Service Name field in SrvInstaller when FileLink is launched as an NT
service. This is done automatically.

2. Via the -t command line switch added manually to shortcut that launches FileLink.
See Command Line Switches.

3. Via the SRVNAME script command when neither (1) nor (2) have been done. The
SRVNAME command also allows monitoring to be turned on and off under script
control.

When SrvMonitor launches, it locates any existing FileLink service name(s). If only one name
is found, SrvMonitor immediately associates itself with this instance of FileLink. If more than
one name is found, SrvMonitor displays a menu that allows you to choose the association you
desire.

SrvMonitor also supports a -t command line switch which you may define in any shortcut that
launches SrvMonitor. This permits you to specify a known service name - this is useful if you
wish to monitor one of multiple instances of FileLink and suppress the menu where the desired
instance must be chosen.

When initially launched, SrvMonitor appears as an icon in the Windows desktop tray. The
icon itself conveys the state of FileLink as shown below.

289Monitoring a FileLink Service

2013 Serengeti Systems Incorporated

When you hove the mouse cursor over the icon, you get a little more information as shown
below.

When you doubleclick on the icon, SrvMonitor opens into a small window like what is shown
below.

Click the close button to return SrvMonitor to its icon state.

In the minimized state, right click on the icon for a control menu. The control menu is shown
below and each menu function is the described.

290

2013 Serengeti Systems Incorporated

Show Service Monitor - Opens the SrvMonitor window (same action as double clicking on
the tray icon).

Hide Service Monitor - Closes the SrvMonitor and returns it to its icon state.

Clear All Saved Service Names - Reset SrvMonitor to monitor services with new or different
names. This is useful when you have selected “Always monitor the instance with this name”
option when first starting SrvMonitor and you wish to now monitor additional services or one
with a different name.

Exit Service Monitor - Terminate SrvMonitor.

Using the CronMaker Utility

The FileLink CronMaker utility is provided to make dealing with the cron event file used with
the CRON script command much easier.

The format of cron event files is described elsewhere in this help file (see Cron Event File
Format) but the manual creation and management of this file for FileLink scheduling purposes
is not intuitive or for the technically faint of heart. The CronMaker utility comes to the rescue.

In CronMaker, you create, edit, and delete events. Each event is named (e.g., Weekly Web
Site Update) and corresponds to one scheduled CRON action.

When CronMaker is launched from within FileLink via the toolbar or menu control, it
automatically attempts to open the default cron event file (name “crontab.txt”) in the current
working folder. In the case where CronMaker might be launched from the Start menu shortcut,
use the Open File button to select and open the desired file.

The main CronMaker screen with an example event is shown below. Click on the buttons and
event table area within the graphic for more information. The steps showing how this example
event was created are presented here.

291Using the CronMaker Utility

2013 Serengeti Systems Incorporated

292

2013 Serengeti Systems Incorporated

CronMaker Event Creation Example

The screen shots shown below is an example of how the “Weekly Web Site Update” cron
event shown on the previous page was created.

When first started and no events are scheduled, CronMaker displays blank screen as shown
below:

Click the New Event button to begin.

293Using the CronMaker Utility

2013 Serengeti Systems Incorporated

CronMaker Event Creation Example P2

The New Event Wizard is now active. The first screen you see is shown below.

Here you enter the event name (i.e., Weekly Web Site Update) and the script operation that
the CRON script command is to perform when the event is triggered (assign “call ‘weekly.s’ to
the %nextcmd script variable). You also indicate when the event should be triggered. In the
case of this example, weekly.

When complete, click the Next button to continue.

294

2013 Serengeti Systems Incorporated

CronMaker Event Creation Example P3

Once the event name and the optional event action is entered and weekly frequency is
selected, you’ll see the following page from the New Event Wizard.

Here you select the hour of the day that you want the event to trigger and the day of the week.
In this example, 11:00PM on Monday. As you can see, you could also specify that the event
trigger hourly, or at multiple hour intervals, on one or more designated days.

When complete, click the Finish button to complete the creation of the cron event.

295Using the CronMaker Utility

2013 Serengeti Systems Incorporated

CronMaker Event Creation Example P4

Once the event has been created, CronMaker returns to the main screen.

Here you can create additional events, edit or delete existing ones, or exit from CronMaker.

296

2013 Serengeti Systems Incorporated

Cron Event File Format

Borrowed from Unix, a cron event file (named crontab in the Unix world) contains
instructions to the FileLink CRON script command of the general form: "run this command at
this time on this date".

The format of this file is complex and not something the casual user needs to be concerned
with. The CronMaker Utility is provided with FileLink for the direct creation and modification of
“crontab.txt” files. The curious may read on for the “techie” details.

Each line of the file has five time and date fields, followed by an optional command to be
saved in the %nextcmd variable. Blank lines, leading spaces, and tabs are ignored. Lines
whose first non-space character is a pound-sign (#) are comments and are ignored. Note that
comments are not allowed on the same line as CRON commands, since they will be taken to
be part of the command.

Commands are executed by CRON when the minute, hour, and month fields match the
current time, and when at least one of the two day fields (day of month or day of week)
match the current day. The time and date fields are:

Field Definition

Minute Minutes after hour (0 - 59)

Hour Hours since midnight (0 - 23)

Day of month Day of month (1 - 31)

Month Month (0 - 11; January = 0); or use name

Day of week Day of week (0 - 6; Sunday = 0); or use name

A field may be an asterisk (*), which always stands for "don't care".

Ranges of numbers are allowed. Ranges are two numbers separated with a hyphen. The
specified range is inclusive. For example, 8-11 for an hour entry specifies execution at hours
8, 9, 10 and 11.

Lists are allowed. A list is a set of numbers (or ranges) separated by commas. Examples:
1,2,5,9 and 0-4,8-12.

Step values can be used in conjunction with ranges. Following a range with /<number>
specifies skips of the number's value through the range. For example, 0-23/2 can be used in
the hour field to specify command execution every other hour. Steps are also permitted after
an asterisk, so if you want to say every two hours, just use */2.

Names can also be used for the month and day of week fields. Use at least the first three
letters of the particular day or month (case doesn't matter) (e.g., Mon, Jan, etc.) Ranges or
lists of names are allowed (e.g., Mon-Wed).

The rest of the line following the day of week field, if present, specifies the command to be
saved in the %nextcmd script file variable.

Note

The day of a command's execution can be specified by two
fields -- day of month and day of week. If both fields are

297Using the CronMaker Utility

2013 Serengeti Systems Incorporated

restricted (i.e., aren't *), a match occurs when either field
matches the current day. For example, 30 4 1,15 * 5 would
cause a match at 4:30AM on the 1st and 15th of each month,
plus every Friday.

Consider the following examples.

run a script 5 minutes after midnight, every day

5 0 * * * call "daily.s"

send a file at 2:15pm on the first of every month

15 14 1 * * sendfile "data.txt"

resume script processing at 10PM on weekdays

0 22 * * 1-5

resume at 23 minutes after midnight, 2AM, 4AM ..., everyday

23 0-23/2 * * *

run a script at 5 minutes after 4AM every Sunday

5 4 * * sun call "Sunday.s"

run a script every 2 hours every Sunday

0 */2 * * 0 call "Sunday.s"

Multiple events may be specified in the “crontab.txt” file to trigger at the different times as
shown below:

run a script at 5PM and 11PM everyday

0 17 * * * call "Daily5PM.s"

0 23 * * * call "Daily11PM.s"

Beware that it is possible for different events in the “crontab.txt” file to trigger at the same time
as shown below:

run a script at 5PM everyday

0 17 * * * call "Daily.s"

run a script every hour on Sunday

0 * * * sun call "AllDaySunday.s"

In this example, both events are scheduled to trigger at 5PM on Sunday. You probably want to
avoid this situation since only the first match event (i.e., running the script “Daily.s”) will be
acted upon. In this example, the “AllDaySunday.s” script will never be run at 5PM on Sunday.

Refer to the Using the FileLink CronMaker Utility, Using The %nextcmd Variable and CRON
for more details.

298

2013 Serengeti Systems Incorporated

Using COM/OLE to Control FileLink

It is possible to control FileLink from your own custom application written in C++, Visual Basic,
VBScript, or other COM/OLE enabled programming language. Anything a script can do -- and
much more -- is possible under programmatic control via FileLink's COM/OLE interface.

FileLink is capable of significantly more complex file transfer sessions by having a custom
application program written in a COM/OLE programmatic interface (or API) enabled
programming language.

Complete sample Visual C++ and Visual Basic projects are included within FileLink package to
give you an example of how COM/OLE programming is done.

A simple VBScript sample program may be seen here.

299Using COM/OLE to Control FileLink

2013 Serengeti Systems Incorporated

COM/OLE Operational Overview

Under normal operation, FileLink reads a script command from a designated file, performs the
command, sets a result code that the script may interrogate, and then FileLink reads the next
command from the file. The script can make decisions based on the value of the result code
and therefore control the course of a file transfer session.

This works great. But as robust as the FileLink script language may be, it still falls short of
what can be done using a true programming language like C++ and Visual Basic.

With FileLink in a COM/OLE environment, there is no script file per se. The application
program launches FileLink, establishes a named session, and then sends script commands by
way of the COM/OLE interface. FileLink performs a command and returns the result code to
the application. (The application may block and get the result code when FileLink completes
the command, or it may issue the command and continue, and receive the result via an event
call. There is never more than a single command pending at one time.)

Upon return, the application program interrogates the result code and determines what to do
next. As necessary, more commands are directed to FileLink until the file transfer session is
complete -- the session is complete according to the application program's criteria, not
FileLink's. At that point, the application closes the session and FileLink terminates.

One of the options when creating a sesson with FileLink is to keep it completely hidden from
view so end users see the user-written application, not FileLink. Each session is uniquely
named, so it is possible to invoke multiple, independent FileLink sessions.

300

2013 Serengeti Systems Incorporated

Sample C++ and Visual Basic Project Files

Two fully functional sample programs are provided with FileLink -- one written in Visual C++
and the other in Visual Basic. All source code and project files are included. Controlling
applications written in other languages (e.g. VBScript and C#) are possible as long as the
languages support the COM/OLE interface.

These programs demonstrate how script commands are sent to FileLink and how result codes
are returned, and may be used as a guide for the creation of your own application. By studying
the source code for these sample programs, you can learn how to write your application.

The sample programs can be used to exercise limited interactive control over FileLink. Each
program allows you to enter script commands from the keyboard and have them executed by
FileLink. The results of each command are returned and displayed. Assuming that you do no
elect to hide FileLink, you can watch commands in the FileLink window .

When you run the C++ sample, you'll see something resembles the following image. The C++
and VB programs are functionally equivalent, so the VB sample is virtually identical.

Caution

These sample programs are not intended for production use and you may
experience difficulties if you attempt to use then in such a manner.

301Using COM/OLE to Control FileLink

2013 Serengeti Systems Incorporated

Note

The time-out parameter specified on a blocking send command call must be long
enough for FileLink to complete the requested command. For example, if you ask
FileLink to send a large file and the time-out is too short, the sample program will
time out before FileLink actually completes the transfer. You may set the time-out
to zero to prevent the sample program from timing out.

302

2013 Serengeti Systems Incorporated

FileLink COM/OLE Interface Description - A Programmer's View

The COM/OLE methods and events used by an application program to control FileLink are
described below.

There are six methods and two events in the FileLink COM/OLE interface.

Methods
· FLStartSession
· FLEndSession
· FLSendCommand
· FLStopCommand
· FLGetVariable
· FLGetVBSVariable

Event
· FLCommandProgress
· FLCommandResult

These methods and event are described in the following sections.

303Using COM/OLE to Control FileLink

2013 Serengeti Systems Incorporated

FLStartSession -- Method to initiate a FileLink session

Overview

Method to initiate a named session between FileLink and a user-written application.

C++ Definition

long FLStartSession(CString strSessionName, long nComPort, BOOL bBlocking, BOOL
bHidden, CString strCmdLineArgs)

VB Definition

FLStartSession(SessionName As String, ComPort As Long, Blocking As Long, Hidden As
Long, Args As String) As Long

Return Value

The numeric result code returned to indicate the success or failure in initiating a named
session with FileLink.

Returns FL_ERROR_SUCCESS if a named session is successfully started.

Returns FL_ERROR_SESSION_EXISTS if a session with the same name already exists.

Returns FL_ERROR_CANNOT_CREATE if a session with FileLink cannot be created.

See COM/OLE Return Codes below for a complete list of possible return values.

Parameters

strSessionName / SessionName

A string defining the session name. Each unique session loads a
separate instance of FileLink.

nComPort / ComPort

A numeric value that specifies which port (1 - 48, where 1 - 48
correspond to COM1 - COM48) to associate with the new session.

bBlocking / Blocking

A boolean that when TRUE results in subsequent FLSendCommand method calls made
during the session being blocking calls. If FALSE, each FLSendCommand is non-blocking.

bHidden / Hidden

A boolean that when TRUE results in FileLink being loaded and run
invisibly. If FALSE, the FileLink window appears as it would
normally.

strCmdLineArgs / Args

A string defining optional command line arguments to pass FileLink when it is launched.

Remarks

This method returns when FileLink has been launched and the session name is established.

304

2013 Serengeti Systems Incorporated

FLEndSession -- Method to terminate a FileLink session

Overview

Method to terminate a named session between FileLink and a user-written application.

C++ Definition

long FLEndSession()

VB Definition

FLEndSession() As Long

Return Value

The numeric result code indicating the success or failure in terminating a session with
FileLink.

Returns FL_ERROR_SUCCESS if a session is successfully terminated.

Returns FL_ERROR_VAR_NOT_FOUND if the variable is not defined.

See COM/OLE Return Codes for a complete list of possible return values.

Parameters

None.

Remarks

This returns after FileLink terminates.

305Using COM/OLE to Control FileLink

2013 Serengeti Systems Incorporated

FLSendCommand -- Method to send a script command to FileLink

Overview

Method to send a script command.

C++ Definition

long FLSendCommand(CString strCommand, long nTimeout)

VB Definition

FLSendCommand(Command As String, Timeout As Long) As Long

Return Value

The numeric result code returned by FileLink after the execution of a script command.

Returns >= FL_ERROR_FROM_FILELINK if the command was executed successfully by
FileLink. This value corresponds to one of FileLink's script command result codes.

Returns FL_ERROR_CMD_IN_PROGRESS if the command is non-blocking and the
command has been successfully initiated.

Returns FL_ERROR_TIMED_OUT if the command timed out.

See COM/OLE Return Codes below for a complete list of possible return values.

Parameters

strCommand / Command

A string defining the FileLink script command to perform.

To have FileLink simulate line numbers in the log file, precede the command with #{number}
and a space character.

nTimeout / Timeout

A long specifying the period of time (10th of seconds) to wait for a blocking Send() to
complete. The parameter is ignored when the Send() is non-blocking.

Remarks

The FLStartSession() method must be called prior to calling Send().

This method blocks or returns immediately depending the selection made in the
FLStartSession() method.

If non-blocking is selected, the FLCommandResult() event is fired upon completion.

If you send a conditional command (e.g., IFFILE or IFERROR) the conditional element of the
command is evaluated and a TRUE/FALSE result is passed back but no actual branching

306

2013 Serengeti Systems Incorporated

action is taken.

For example, if the following script command is sent to FileLink and the file exists FileLink
returns $ERROR_OLE_COMPARISON_TRUE; if file does not exist, the return value is
$ERROR_OLE_COMPARISON_FALSE. The goto portion of the command is ignored since
FileLink really does not have a script file to branch within.

IFFILE "c:\Program Files\FileLink\thisfile" goto found it

If script labels are sent, they are ignored.

307Using COM/OLE to Control FileLink

2013 Serengeti Systems Incorporated

FLStopCommand -- Method to stop a running FileLink script command

Overview

Method to cancel a pending script command from previous non-blocking FLSendCommand().

C++ Definition

long FLStopCommand()

VB Definition

FLStopCommand() As Long

Return Value

A numeric value indicating the success or failure of initiating the cancellation of a FileLink
script command.

Returns FL_ERROR_SUCCESS if a stop is initiated -- this does not mean the command has
been stopped, rather only that the request has been successfully passed to FileLink

Returns FL_ERROR_NO_CMD_PENDING if no script command is currently in progress that
can be stopped.

See COM/OLE Return Codes for a complete list of possible return values.

Parameters

None.

Remarks

The FLStartSession() and FLSendCommand() methods must be called prior to calling
FLStopCommand().

This method returns immediately. The FileLink command may or may not terminate depending
on when this method is called. The effect of calling this method is same as pressing the Esc
key or clicking the Stop button when FileLink is running interactively. If the command
terminates, the FLSendCommand() completion event is fired with the corresponding FileLink
result code.

308

2013 Serengeti Systems Incorporated

FLGetVariable -- Method to get the value of a FileLink script variable

Overview

Method to get the value of the specified FileLink script variable. Note: this method does not
work when the calling program is written in VBScript - use the FLGetVBSVariable method
instead.

C++ Definition

long FLGetVariable(CString strVariable, CString strValue)

VB Definition

FLGetVariable(Variable As String, Value As String) As Long

Return Value

A numeric value indicating the success or failure of obtaining the value FileLink variable.

Returns FL_ERROR_SUCCESS if the variable is found and its value is returned in the
strValue / Value variable.

Returns FL_ERROR_VAR_NOT_FOUND if the variable is not defined.

See COM/OLE Return Codes for a complete list of possible return values.

Parameters

strVariable / Variable

A string defining the FileLink script variable name.

strValue / Value

A string that contains the value of the variable upon return.

Remarks

The StartSession() method must be called prior to calling FLGetVariable().

309Using COM/OLE to Control FileLink

2013 Serengeti Systems Incorporated

FLGetVBSVariable -- VBS method to get the value of FileLink script variable

Overview

Method used in VBScript to get the value of the specified FileLink script variable. This method
may also be in VB programs instead of FLGetVariable if you wish.

VB Definition

FLGetVBSVariable(Variable As String) As String

Return Value

A string containing the value of the specified FileLink variable. An error is thrown if the variable
is not defined or if FileLink is unable to process the request.

Parameters

Variable

A string defining the FileLink script variable name.

Remarks

The StartSession() method must be called prior to calling FLGetVBSVariable().

310

2013 Serengeti Systems Incorporated

FLCommandProgress -- Event fired to update SENDFILE/RCVFILE progress

Overview

An event fired when a SENDFILE or RCVFILE script command sent on a non-blocking
FLSendCommand() updates the percent sent or received of the current file transfer.

C++ Definition

void FLCommandProgress(long nPercent)

VB Definition

FLCommandProgress (ByVal Percent As Long)

Return Value

None.

Parameters

nPercent / Percent

A long in the range of 0 to 100 returned by FileLink at random intervals indicating the
progress of a SENDFILE or RCVFILE script command.

Remarks

This event is only fired when a non-blocking FLSendCommand() method is called and a
SENDFILE or RCVFILE script command has been sent.

311Using COM/OLE to Control FileLink

2013 Serengeti Systems Incorporated

FLCommandResult -- Event fired at the conclusion of a non-blocking
command

Overview

An event fired when a script command sent on a non-blocking FLSendCommand() completes.

C++ Definition

void FLCommandResult(long nResultCode)

VB Definition

FLCommandResult(ByVal ResultCode As Long)

Return Value

None.

Parameters

nResultCode / ResultCode

A long returned by FileLink after the execution or cancellation
of a script command that equals one of the FileLink result codes.

Remarks

This event is only fired when a non-blocking FLSendCommand() method is called. The event
is fired when the command completes normally or after a command is stopped by calling
FLStopCommand().

312

2013 Serengeti Systems Incorporated

FLLogMsgs -- Event fired to provide script log information

Overview

An event fired whenever a line of text added to the FileLink console window. Process this
event if you wish to implement something similar to FileLink’s console window in your
application. The following are example lines of text delivered via this event:

*Logon in progress...

*Logon successful.

C++ Definition

void FLLogMsgs(BSTR bstrLogMessage)

VB Definition

FLLogMsgs(ByVal LogMessage As String)

Return Value

None.

Parameters

bstrLogMessage / LogMessage

A NULL terminated string containing one line of log text.

Remarks

The string arriving with this event will typically be less than 80 characters in length. Your
handler for this event should be as brief as possible since FileLink is suspended until control is
returned - typically your handler should save the contents of the delivered string as appropriate
and return immediately.

313Using COM/OLE to Control FileLink

2013 Serengeti Systems Incorporated

COM/OLE Return Codes

Values returned by automation methods:

Constant Value Value Description

FL_ERROR_FROM_FILELINK 0
Any return code greater than or equal to
this value comes from FileLink and not
from the automation component.

FL_ERROR_SUCCESS -1
The requested operation completed
successfully.

FL_ERROR_NO_SESSION -2
A FileLink session has not been
established by calling FLStartSession().

FL_ERROR_NO_RESPONSE -3

An internal error indicating that a
command sent to FileLink has not returned
properly from a COM/OLE call. Make sure
that there are no instances of FileLink
running and retry. A Windows reboot may
be necessary..

FL_ERROR_SESSION_EXISTS -4
A previous session with the same name
already exists.

FL_ERROR_TIMED_OUT -5
The command sent in a blocking
FLSendCommand() call has failed to
complete in the allotted time-out period.

FL_ERROR_NO_CMD_PENDING -6
No command is pending that can be
stopped on a call to FLStopCommand().

FL_ERROR_CMD_IN_PROGRESS -7
A script command sent on a non-blocking
FLSendCommand() call is in progress.

FL_ERROR_VAR_NOT_FOUND -8
The specified FileLink script variable
specified in a FLGetVariable() call is not
defined.

FL_ERROR_CANNOT_CREATE -9

An internal error indicating that a named
FileLink session cannot be created. Make
sure that there are no instances of FileLink
running and retry. A Windows reboot may
be necessary.

FL_ERROR_INTERNAL_FAILURE -10
An internal error indicating that an internal
Windows error has occurred. A Windows
reboot may be neccessary.

314

2013 Serengeti Systems Incorporated

Sample VBScript Program

FileLink may be called from VBScript (VBS) programs. The following is an example VBS
program that loads FileLink, dials the modem to connect to a remote system, retrieves and
displays the value of an internal FileLink variable, and then disconnects.

' Instantiate a FileLink object

' -----------------------------

Set FLReq = Createobject("FLAutomation.Automate")

If err.number <> 0 then

Wscript.quit 1

End If

' Set connection properties and open connection

' ---

ResultCode = FLReq.FLStartSession("Sample", 1, True, False, "")

If ResultCode <> -1 then msgbox "FileLink Connection Error
occured!"

FLReq.FLEndSession

WScript.quit 2

End If

' dial the remote system

' ----------------------

cmdString = "DIAL '555-1212'"

ResultCode = FLReq.FLSendCommand(cmdString, 600)

' get the last error

' ------------------

msgbox FLReq.FLGetVBSVariable("%lasterror")

' disconnect from remote system

' -----------------------------

cmdString = "DISCONNECT"

ResultCode = FLPReq.FLSendCommand(cmdString, 600)

' end FileLink session and exit

' -----------------------------

FLReq.FLEndSession

Wscript.Quit 0

Using Script File Result Codes

Each FileLink script command returns a four-digit numeric result code when it completes to
indicate success or failure. When FileLink is used interactively, or if you need to interpret a log
file, it is not necessary to know the specific numeric values because FileLink translates all of
these values to English phrases in the form of status messages. When writing these
messages to the log file, FileLink includes the numeric value in brackets at the end of the
message to assist you in building error recovery into your script files.

When writing a script file you may want to take advantage of the IFERROR command to test
for specific result codes. In this case, use these numeric values, or the corresponding

315Using Script File Result Codes

2013 Serengeti Systems Incorporated

predefined $ERROR_xxx variable (see below), in the IFERROR command to test for a
specific result.

FileLink always returns a zero result code if a script command is completed successfully.
Therefore a script file checks for a non-zero result codes to determine if an operation failed. If
you choose to check for specific result codes when a command fails, you have more flexibility
in recovering from errors.

FileLink defines a set of internal variables referred to as $ERROR variables. $ERROR
variables allow you to use descriptive variable names rather than a raw numeric result code
value when using the IFERROR command. This results in easier to understand script files.

The FileLink $ERROR variables and corresponding numeric result codes are listed below:

$ERROR Variable Name Code Description

$ERROR_SUCCESS 0 No error occurred

$ERROR_INVALID_CMD_LINE 1001 Invalid Shortcut Target command line

$ERROR_FILE_OPEN_ERROR 1003 Cannot open file

$ERROR_NO_MORE_VARS 1008 Too many variables assigned

$ERROR_VAR_NOT_FOUND 1009 Variable not found

$ERROR_VAR_INVALID 1010 Variable name invalid

$ERROR_NO_WILD_CARDS 1011 File name wildcard characters not
allowed

$ERROR_COMMAND_INVALID 1012 Missing, invalid, or unrecognized
command

$ERROR_PROMPT_CANCELLED 1013 Cancel button clicked in Prompt dialog

$ERROR_INVALID_FILE_NAME 1014 Invalid file/path name

$ERROR_COPY_CANCELLED 1018 File copy canceled

$ERROR_FILE_NOT_RENAMED 1020 File could not be renamed

$ERROR_FILE_NOT_DELETED 1021 File could not be deleted

$ERROR_FILE_NOT_COPIED 1022 File could not be copied

$ERROR_IS_CONNECTED 1024 Line is already connected

$ERROR_NOT_CONNECTED 1025 Line not connected

$ERROR_NO_MODEM_RESP 1027 Modem not responding

$ERROR_NO_CARRIER 1029 Connect error -- no carrier tone
detected

$ERROR_CONNECT_TIMEOUT 1030 Connect time-out expired (this may
also occur on dial or answer
commands)

$ERROR_INVALID_MODEM_CMD 1031 Invalid/unrecognized modem response

$ERROR_BUSY_SIGNAL 1034 Line is busy

$ERROR_NO_DIAL_TONE 1035 Connect error -- no dial tone detected

$ERROR_ANSWER_ERROR 1039 Unable to answer

$ERROR_CONN_CANCELLED 1042 Connect canceled

$ERROR_SEND_FILE_ERROR 1046 File read error, canceling transmission

$ERROR_XMT_ERROR 1050 File transmission error

$ERROR_ASCII_SEND_FILE_CANCEL 1051 ASCII send file operation canceled

$ERROR_NO_FILES_FOUND 1053 No files found matching wildcard

316

2013 Serengeti Systems Incorporated

pattern

$ERROR_SEND_FILE_CANCELLED 1054 Transmission canceled

$ERROR_FILE_NOT_FOUND 1055 File not found

$ERROR_LINE_DROPPED 1057 Line dropped, disconnecting...

$ERROR_FILE_RCV_ERROR 1059 File receive operation failed

$ERROR_WRITE_ERROR 1063 File write error

$ERROR_READ_ERROR 1069 File read error

$ERROR_RCV_ERROR 1070 Unable to receive characters

$ERROR_RCV_CANCELLED 1073 Receive canceled

$ERROR_AUTO_NAME_FAIL 1074 File auto-naming failed

$ERROR_MALLOC_FAILURE 1076 No buffers available

$ERROR_RCV_FILE_CANCELLED 1077 Receive canceled

$ERROR_FILE_NAME_REQUIRED 1078 Command requires receive file name

$ERROR_PTR_FAILURE 1080 Printing failed

$ERROR_NOT_XE_VERSION 1082 FileLink XE is required

$ERROR_PTR_CANCELLED 1083 Printing canceled

$ERROR_ASCII_RCV_FILE_CANCEL 1087 ASCII receive file operation canceled

$ERROR_CANNOT_RUN_SCRIPT 1088 Cannot run script (Terminal is active)

$ERROR_LOG_FILE_ERROR 1089 Cannot open script log file

$ERROR_LOG_NOT_OPEN 1092 Script log file not open

$ERROR_CANNOT_OPEN_SCRIPT 1096 Cannot open script file

$ERROR_SCRIPT_EOF 1097 Past end-of-file on script file

$ERROR_UNKNOWN_COMMAND 1099 Unknown/undefined script command

$ERROR_INVALID_ARGUMENT 1100 Invalid argument

$ERROR_INVALID_LABEL 1101 Invalid label

$ERROR_LABEL_NOT_FOUND 1102 Label not found

$ERROR_TOO_MANY_LABELS 1103 Maximum number of labels exceeded

$ERROR_DUPLICATE_LABEL 1104 Duplicate label found

$ERROR_MAX_FIELDS 1105 More than 10 arguments not allowed

$ERROR_FILE_POS_ERROR 1106 Cannot position script file

$ERROR_WAIT_TIMED_OUT 1109 Time-out expired

$ERROR_WORD_LENGTH_BAD 1110 Selected protocol requires 8-bit data
byte

$ERROR_CHAIN_FAILED 1113 Script file chain command failed

$ERROR_SCRIPT_READ_ERROR 1116 Error reading script file

$ERROR_NO_REGISTRY 1120 Registry values not found for COMx

$ERROR_HW_NOT_CFGD 1121 Hardware error or COM port not found

$ERROR_EXEC_FAILED 1123 EXEC command failed

$ERROR_PIPE_FAILED 1125 PIPE command failed

$ERROR_PIPE_OPEN_TIMEOUT 1127 Pipe open timed out

$ERROR_PIPE_READ_FAILED 1128 Pipe read failure

$ERROR_PIPE_READ_TIMEOUT 1129 Pipe read timed out

$ERROR_PIPE_WRITE_FAILED 1130 Pipe write failure

$ERROR_PIPE_WRITE_TIMEOUT 1131 Pipe write timed out

$ERROR_INVALID_PIPE_PROTOCOL 1132 Bad pipe protocol - ignored

$ERROR_NO_TIMERS_AVAILABLE 1134 Cannot time-out /drop option

$ERROR_OPTIMEDOUT 1139 Operation timed out

$ERROR_PIPE_NOT_CREATED 1140 Pipe not previously created

317Using Script File Result Codes

2013 Serengeti Systems Incorporated

$ERROR_PIPE_ALREADY_EXISTS 1141 Pipe already exists

$ERROR_TRACE_LOG_NOT_OPEN 1145 Trace log file not currently open

$ERROR_TRACE_LOG_ERROR 1146 Error writing to trace log file

$ERROR_EVENT_LOGGING_ERROR 1147 Error writing to NT event log

$ERROR_NO_FILE_FOUND 1164 No file found

$ERROR_NO_DIR_ACCESS 1167 Cannot access/create local folder

$ERROR_NO_RELATIVE_PATHS 1168 Relative pathnames not allowed here

$ERROR_RAS_NOT_INSTALLED 1170 Dial-up networking not installed

$ERROR_RAS_CONNECTION_FAILED 1172 Dial-up networking connection failed

$ERROR_AUTHORIZATION_FAILED 1175 Authorization not found

$ERROR_INVALID_MINIMIZED 1176 Script command not permitted when
main window is minimized or when
running as NT service

$ERROR_NO_MODEMS_DETECTED 1177 No modems detected in system

$ERROR_NO_PORTS_DETECTED 1178 No COM ports detected in system

$ERROR_THREAD_ERROR 1180 Internal thread launch failure

$ERROR_NO_ACTIVITY_TIMEOUT 1181 No activity time-out expired during file
send or receive

$ERROR_INVALID_FUNCTION_NAME 1185 Invalid function name

$ERROR_FUNCTION_FILE_ERROR 1186 Function file creation error.

$ERROR_TOO_MANY_ARGUMENTS 1189 Too many arguments passed to
function

$ERROR_BAD_ARGUMENT_LIST 1190 Number of function arguments do not
match declaration.

$ERROR_TOO_MANY_FUNCTIONS 1192 Too many functions defined or nesting
calls too deep

$ERROR_FUNCTIONS_NOT_RECURSI
VE

1193 Functions may not be called recursively

$ERROR_EMAIL_CANNOT_CREATE 1200 Cannot create e-mail message

$ERROR_EMAIL_CANNOT_SEND 1201 Cannot send e-mail message

$ERROR_EMAIL_CANNOT_GET 1202 Cannot get e-mail message

$ERROR_EMAIL_NO_MESSAGES 1203 No messages on e-mail server

$ERROR_CRONTAB_EMPTY 1210 crontab.txt file contains no scheduling
condition(s)

$ERROR_SRVMONITOR_FAILED 1210 Unable to launch SrvMonitor

$ERROR_SRVR_FILE_EMPTY 1229 File exists on server but its length is 0

$ERROR_INVALID_COMPARISON 1230 Invalid file statistics comparison

$ERROR_FILE_INFO_UNAVAIL 1231 Local or server file data unavailable

$ERROR_LOCAL_FILE_NEWER 1232 Local file is newer

$ERROR_LOCAL_FILE_OLDER 1233 Local file is older

$ERROR_FILES_SAME_SIZE 1234 Local and server files identical in size

$ERROR_LOCAL_FILE_LARGER 1235 Local file is larger

$ERROR_LOCAL_FILE_SMALLER 1236 Local file is smaller

$ERROR_LOCAL_FILE_LARGEREQ 1237 Local file same size or larger

$ERROR_LOCAL_FILE_EXISTS 1238 Local file exists

$ERROR_NO_LOCAL_FILE_EXISTS 1239 Local file does not exist

$ERROR_LOCAL_FILE_EMPTY 1240 Local file exists but length equals 0

$ERROR_FILES_SAME_DATETIME 1241 Local and server files have same date
and time

318

2013 Serengeti Systems Incorporated

$ERROR_OLE_COMPARISON_TRUE 1250 Comparison results is TRUE

$ERROR_OLE_COMPARISON_TRUE 1251 Comparison results is FALSE

$ERROR_OLE_CMD_ACCEPTED 1252 Statement or label accepted

$ERROR_ZIP_DLL_MISSING 1255 Zip library file is missing

$ERROR_ZIP_FILE_CREATE 1256 Error updating or creating zip file

$ERROR_ZIP_FILE_CANCELED 1257 Zip file operation canceled

$ERROR_ZIP_FILE_EXTRACT 1258 SSH/SSL components not installed

$ERROR_PGP_NOT_INSTALLED 1270 PGP components not available; this is
an installation issue, verify that the
PGP components were chosen

$ERROR_PGP_KEYID_MISSING 1271 User name, comment, and/or e-mail
address required to identify recipient of
encrypted file

$ERROR_PGP_UNACCEPTABLE_FILE 1272 Cannot import PGP keys from this file

$ERROR_PGP_UNRECOGNIZED_FILE 1273 Key file is not in a recognized format

$ERROR_PGP_KEY_EXISTS 1274 Key already exists in your keyring

$ERROR_PGP_IMPORT_FAILED 1275 PGP import operation failed

$ERROR_PGP_NO_KEYRING_FILE 1276 PGP keyring file cannot be created

$ERROR_PGP_ENCRYPTION_FAILED 1277 PGP encryption operation failed or
canceled

$ERROR_PGP_DECRYPTION_FAILED 1278 PGP decryption operation failed or
canceled

$ERROR_PGP_INITIALIZATION_FAILED 1279 PGP component failed to initialize

$ERROR_PGP_KEY_DOES_NOT_EXIST 1280 Key does not exist in your key ring

$ERROR_PGP_PASSPHRASE_BLANK 1281 Passphrase not present

$ERROR_GNUPG_CMD_FAILED 1282 External GnuPG command failed or
canceled

$ERROR_SNAPSHOT_CANCELLED 1290 SNAPSHOT command canceled

$ERROR_DIFF_CANCELLED 1291 DIFF command canceled

$ERROR_DB_NO_FILE_OPEN 1300 No user database file currently open

$ERROR_DB_NO_QUERY_RESULTS 1301 No results available from previous
query

$ERROR_DB_ALL_RESULTS_RTND 1302 All results returned from previous query

$ERROR_DB_QUERY_FAILED 1303 Query failed

$ERROR_DB_QUERY_RESULT_NULL 1304 Query result empty

$ERROR_DB_RAW_QUERY_RESULTS 1305 Query result processing failed, raw
result saved

$ERROR_LICENSE_VIOLATION 2000 Product not licensed or license
removed

The follow constants may be used to assist in writing more legible and self-documenting
scripts:

Doing File Comparisons

$FILE_EMPTY 3000 Other file exists but is empty

$FILE_LARGER 3001 Other file is larger

$FILE_SMALLER 3002 Other file is smaller

$FILE_SAME_SIZE 3003 Other file is same size

$FILE_NEWER 3004 Other file is newer

$FILE_OLDER 3005 Other file is older

319Using Script File Result Codes

2013 Serengeti Systems Incorporated

$FILE_SAME_DATETIME 3006 Other file has same date/time

Identifying Difference From DIFF Commands

$DIFF_FILE_NOT_FOUND 5001 File not found

$DIFF_FILE_IS_NEW 5002 File is new

$DIFF_FILE_SIZE 5003 File size has changed

$DIFF_FILE_DATETTIME 5004 File date/time stamp has changed

FileLink 3.2320

2013 Serengeti Systems Incorporated

Index

- % -
%cr variable 99

using the 99

%crlf
using the 99

%currentlocaldir variable 100
using the 100

%date variable
using the 101

%datetime variable
using the 101

%dbqueryrawresult variable
using the 102

%dbqueryrows variable
using the 102

%dbqueryvariables variable
using the 102

%difffileid variable
using the 103

%difffilename variable
using the 103

%difffiles variable
using the 104

%difffiletext variable
using the 103

%diffnum variable
using the 104

%ftpsnapshotfiles variable
using the 114

%lasterror variable 105
using the 105

%lasterrormsg variable 106
using the 106

%lastfile variable
using the 107

%lastpath variable
using the 107

%lf
using the 99

%lnewport variable 109
using the 109

%nextcmd variable
using the 108

%nextfile variable
using the 110

%nextfiledate variable
using the 111

%nextfiledatetime variable
using the 111

%nextfilesize variable 111
using the 111

%nextfiletime variable 111
using the 111

%nextpath variable
using the 110

%port variable
using the 112

%rcvfilecount variable
using the 113

%sendfilecount variable
using the 113

%snapshotfiles variable
using the 114

%time variable
using the 101

%upzipcount variable
using the 115

%zipcount variable 115
using the 115

- / -
/baudrate 275

/carrier 275

/flowconrtrol 275

/parity 275

/stopbits 275

/wordlength 275

- 8 -
8.3 file naming convention 251

- A -
accepting remote commands 244

always on top
displaying the FileLink window 30

Index 321

2013 Serengeti Systems Incorporated

ANSWER 123

APPEND 124, 251

append files
on FTP server 251

Applets Menu 28

archive directory
setting the 125

ARCHIVEDIR 125

arguments
script file 75, 76

shortcut target 94

arithmetic
using in variables 89

ASCII armoring 43

ASCII file transfers 57

ASK 126

AUTHDATA 128

Authorizating Remote Users 95

Authorization File Format 96

AUTHPW 129

AUTHUSER 130

auto-answer 123

auto-dial 154

- B -
baud rate

setting the 275

BEGINFUNCTIONS 131

binary character 198

blocking factor 251

BREAK 132

break state 132

BROWSE 133

buffer sizes 238

- C -
CALL 134

call a script file 134

carriage control 211

CHAIN 135

chain to script file 135

change directory
on local PC 136

character I/O 196, 198

CHGDIR 136

Clipboard 271

COM port
setting in script language 275

COM/OLE event
FLCommandProgress 310

FLCommandResult 311

FLLogMsgs 312

COM/OLE interface 298

COM/OLE method
FLEndSession 304

FLGetVariable 308

FLGetVBSVariable 309

FLSendCommand 305

FLStartSession 303

FLStopCommand 307

COM/OLE overview 299

command line
arguments 94

shortcut target 19

switches 19

comments in script files 81

concatenate two strings 254

concatenation 254

conditional branching 179, 181, 182, 183, 184,
185, 186, 187, 188, 189, 190, 191, 193, 205, 206,
207

Configuration
for Current User vs. All Users 18

configuration settings
exporting 165

importing 194

configuring FileLink 49

CONNECT 137

CONSOLE 138

console window 22
entering commands into 32

output to 138

controlling FileLink
from a user application 298

controlling script log output 91

COPY 139

copy file 139

Courier V.Everything 37, 215

create directory
on local PC 209

CREATEMAIL 140

FileLink 3.2322

2013 Serengeti Systems Incorporated

CRON 141

CronMaker utility
using the 290, 292, 293, 294, 295

Crontab File Format 296

- - -
-d switch 19

- D -
date arithmetic 90, 144, 145

DATEADD 144

DATESUB 145

DBCLOSE 146

DBGETRESULTS 147

DBQUERY 148

DBREWIND 149

DBUSE 150

debugging
script files 82

DEC 151

decrypting
PGP 225

default buffer size 238

default directory
setting the 277

DELDIR 152

DELETE 153

delete directory
on local PC 152

delete file 153

detect a modem 37

DIAL 154

Dial-In Connection With Authorization 284

dialog box
open file 133

prompt in 126, 237

Dial-Up Connection Performing a Logon 283

DIFF 155

DIFFREWIND 156

digital signatures
PGP 44

direct connect 137

directory
listing 200

DISCONNECT 158

disconnect line 158

DISPLAY 157

display dialog box 211

display variable value 157

DOSCMD 159

drag and drop 135

- E -
editing script files 72

editor
script file 72

E-mail in Script Files
receiving 93

sending 93

e-mail messages
creating 140

getting 171

sending 208, 253

encrypting
PGP 228

ENDFUNCTION 160

ENDFUNCTIONS 161

Entering Commands in the Console Window 32

EXEC 162

execute a script command 222

execute external program 162

execute internal DOS command 159

EXIT 164

exit code 164

EXPORT 165

- F -
file date and time

comparing 179, 191

file existence
determining 182, 183

file I/O 242, 278

file names
as script arguments 76

file size
comparing 188

file system
local 155, 264

Index 323

2013 Serengeti Systems Incorporated

file system changes
locating 168

file transfer
features 15

protocol configuration 56

file transfer protocols
define 238

FileLink Configurator
File Configuration 51

Hardware Configuration 52

Modem Configuration 53

PGP Configuration 63

Terminal Configuration 54

Transfer Configuration 55

User vs. Machine Configuration 67

FileLink Main Window Details 23

fingerprint 223

FLUSH 166

flush receive buffer 166

forced exit 164

FUNCTION 167

function declarations
BEGINFUNCTIONS 131

ENDFUNCTION 160

ENDFUNCTIONS 161

RETURN 248

functions declarations
FUNCTION 167

- G -
General Features 14

GETDIFF 168

GETFILE 170

GETMAIL 171

GETNEXTFILE 173

GETREWIND 176

Getting Online Help 31

GnuPG command
sending a 223

GO 177

GOTO 178

- H -
Help Menu 29

- I -
icon

running FileLink as 40

IFDATE 179

IFERROR 181

IFERROR!= 181

IFERROR< 181

IFERROR<= 181

IFERROR= 181

IFERROR> 181

IFERROR>= 181

IFFILE 182

IFNFILE 183

IFNO 184

IFNSTRCMP 185

IFNSUBSTR 186

IFNUM 187

IFSIZE 188

IFSUBSTR 190

IFTIME 191

IFYES 193

IMPORT 194

INC 195

- K -
Kermit file transfers 58

key ID 41

- L -
label

branching to 178

labels in script files 80

LINEIN 196

LINEOUT 198

LISTDIR 200

LOG 201

log file
script 201

trace 269

writing message to 203

LOGMSG 203

LOGNTEVENT 204

FileLink 3.2324

2013 Serengeti Systems Incorporated

long file names 251

LOOPCOUNT 207

LOOPIF 205

looping 205, 206, 207

LOOPTO 206

- M -
MAILTO 208

Main File Menu 25

MAKEDIR 209

MAKEFILENAME 210

MESSAGEBOX 211

MINIMIZE 213

minimize window 213

MODEMCMD 214

MODEMDEFAULTS 215

MODEMDETECT 216

MODEMRESET 217

MODEMRESP 218

modems
detecting 38

factory defaults 37

used with FileLink 37

MONITOR 266

MOVE 219

move file 219

- - -
-n switch 19

- N -
NATO 220

newest or oldest file 170, 173

NT event log
writing message to 204

NT service
installing as 285

null-modem 137

- O -
options

in script file 79

- - -
-p switch 19

- P -
passive-mode 15

passphrase
PGP 42

PAUSE 221

PERFORM 222

performing a remote logon 280

PGP encryption 40
decrypting a file 225

encrypting a file 228

importing keys 232

PGP key
create 64

manage 66

select 65

PGPCOMMAND 223

PGPDECRYPT 225

PGPENCRYPT 228

PGPIMPORT 232

PLAYSOUND 233

PRESSANYKEY 234

PRINT 235

print file 235

programmatic interface 298

programming interface
COM/OLE 302

events 302

methods 302

PROMPT 237

prompt.s 39

PROTOCOL 238

- Q -
quitting program 164

- R -
RCVFILE 240

READFILE 242

Index 325

2013 Serengeti Systems Incorporated

reading characters from COM port 196

receiving files
in script file 240

REMOTECMD 244

RENAME 245

renaming files 245

RESTORE 246

restore window from icon 246

result codes 181, 314

RESUME 247

RETURN 248

Run Minimized box 40

running as an icon 40, 213

Running FileLink 16

- - -
-s switch 19

- S -
sample programs

COM/OLE 300

sample script files 280

scheduling file transfers 35

scheduling script commands 141, 221

Scheduling Script Operation 92

scheduling tasks 141, 221

Script Commands
grouped by function 119

script file
prompting in 39

script language
features 16

programming 73

Scripts Menu 27

SENDCMD 250

SENDFILE 251

sending a user ID and a password 280

sending files
in script file 251

SENDMAIL 253

SET 254

SETEXTRACT 256

SETLEFT 257

SETLEN 258

SETMID 259

SETNUM 260

SETRIGHT 262

SETSUBSTR 263

shortcuts
in Start menu 16

on desktop 16

Shutting Down FileLink Service 287

Simple Async Dial-Up Script 281

Simple Async Dial-Up Script With Error Recovery
282

SNAPSHOT 264

SPEAKER 265

speaker control 265

SQL database
"rewinding" query results from a 149

close a 146

creating/opening a 150

getting query results from 147

issuing a command or query to a 148

SrvMonitor
controlling access to 266

using the 288

SRVNAME 266

STOP 267

stop script execution 267

string comparison 185, 186, 189, 190

system date 78

System Menu 30

system time 78

- T -
TERMINAL 268

Terminal applet
Connection menu 69

File Transfer menu 71

Help menu 72

Settings menu 70

starting the 268

using the 68

text files
reading 242

writing to 278

The FileLink Script File Editor 72

time delay 221

time-out

FileLink 3.2326

2013 Serengeti Systems Incorporated

time-out
no activity 220

Tools Menu 26

trace window 271

TRACELOG 269

TRACEWIN 271

tray icon 288

typing commands 39
into 32

- U -
unique file name

creating 210

unprintable
sending character(s) 198

UNZIP 273

unzipping
files 273

USEPORT 275

User vs. Machine Configuration 67

Using functions 85

Using the CronMaker Utility 290

Using the FileLink TTY Terminal Applet 68

- V -
variable

arithmetic 89

decrement 151

increment 195

numeric comparing 187

variables 110
%cr 99

%crlf 99

%currentlocaldir 100

%dbqueryrawresult 102

%dbqueryrows 102

%dbqueryvariables 102

%difffileid 103

%difffilename 103

%difffiles 104

%difffiletext 103

%diffnum 104

%ftpsnapshotfiles 114

%lasterror 105

%lasterrormsg 106

%lastfile 107

%lastpath 107

%lf 99

%newport 109

%nextcmd 108

%nextfile 110

%nextfiledate 111

%nextfiledatetime 111

%nextfilesize 111

%nextfiletime 111

%nextpath 110

%port 112

%rcvfilecount 113

%sendfilecount 113

%snapshotfiles 114

%unzipcount 115

%zipcount 115

arithmetic 260

assigning values to 254

evaluating numeric expressions 260

numeric 77

script file 78

used in command options 83

VBScript 314
sample 314

Visual Basic 300

Visual C++ 300

- W -
WORKINGDIR 201, 277

WRITEFILE 278

writing characters out COM port 198

- X -
Xmodem File Transfers 59

Xmodem1K File Transfers 60

- Y -
Ymodem File Transfers 61

- Z -
ZIP 279

zipping

Index 327

2013 Serengeti Systems Incorporated

zipping
files 279

Zmodem File Transfers 62

Serengeti Systems Incorporated

1108 Lavaca Street, Suite 110 PMB 431

Austin, Texas 78701 USA

www.robo-ftp.com

www.serengeti.com

	Notice to Evaluation Users
	FileLink User's Guide
	Notational Conventions
	Introducing FileLink
	FileLink Features Overview
	General Features
	File Transfer Features
	Script Language Features

	Running FileLink
	Configuration for Current User vs. All Users
	Command Line Switches
	FileLink Console Window
	FileLink Console Window Details
	File Menu
	Tools Menu
	Scripts Menu
	Applets Menu
	Help Menu
	System Menu

	Using FileLink
	Getting Online Help
	Entering Commands in the Console Window
	Scheduling File Transfers With FileLink
	Modems and FileLink
	Detecting Modems at Startup
	Running FileLink With Prompt.s
	Running FileLink as an Icon

	FileLink and PGP Cryptography
	PGP Public and Private Keys
	PGP Passphrases
	PGP ASCII Armoring
	PGP Digital Signatures
	FileLink's Implementation of PGP
	Backing Up Your Keyring File Set
	Using PGP With FileLink Step-By-Step Guide

	Using the FileLink Configurator
	File Configuration
	Hardware Configuration
	Modem Configuration
	Terminal Configuration
	Transfer Configuration
	File Transfer Protocol Configuration
	ASCII File Transfers
	Kermit File Transfers
	Xmodem File Transfers
	Xmodem1K File Transfers
	Ymodem File Transfers
	Zmodem File Transfers
	PGP Configuration
	PGP Configuration: Create Key
	PGP Configuration: Select Key
	PGP Configuration: Manage Keys
	User vs. Machine Configuration

	Using the FileLink TTY Terminal Applet
	Terminal Connection Menu
	Terminal Settings Menu
	Terminal File Transfer Menu
	Termnal Help Menu

	The FileLink Script File Editor
	Script Programming
	Script File Command Arguments
	Script File Alphanumeric Constants
	Script File Numeric Constants
	Script File Variables
	Script File Command Options
	Labels in Script Files
	Comments in Script Files
	Debugging Script Files
	Using Variables in Command Options
	Using Functions
	Performing Variable Arithmetic and Numeric Comparisons
	Performing Date Arithmetic
	Controlling Script Command Logging
	Scheduling Script Operation
	Sending and Receiving E-mail in Script Files
	Using Shortcut Target Arguments in Script Files
	Authorizing Remote Users in TTY Mode
	Authorization File Format

	Internal Script Variables
	Using the %cr, %crlf, and %lf Variables
	Using the %currentlocaldir Variable
	Using the %date, and %datetime, and %time Variables
	Using the %dbqueryrawresult, %dbqueryrows and %dbqueryvariables Variables
	Using the %difffileid, %difffilename, and %difffiletext Variables
	Using the %difffiles and %diffnum Variables
	Using the %lasterror Variable
	Using the %lasterrormsg Variable
	Using the %lastfile and %lastpath Variables
	Using the %nextcmd Variable
	Using the %newport Variable
	Using the %nextfile, %nextpath, and %nextfolder Variables
	Using the %nextfiledate, %nextfiledatetime, and %nextfiletime Variables
	Using the %port Variable
	Using the %rcvfilecount and %sendfilecount Variables
	Using the %snapshotfiles Variable
	Using the %zipcount and %upzipcount Variables

	Script File Command Overview
	Script Commands Grouped by Function
	ANSWER -- Wait for incoming telephone call
	APPEND -- Append one local file to another
	ARCHIVEDIR -- Define FileLink's archive folder
	ASK -- Display dialog box with yes/no question
	AUTHDATA -- Obtain user data from authorization file
	AUTHPW -- Verify remote user password
	AUTHUSER -- Verify remote user name
	BEGINFUNCTIONS -- Begin function declaration section
	BREAK -- Set a breakpoint location
	BROWSE -- Display a pop-up open file dialog box
	CALL -- Call another script file
	CHAIN -- Transfer to another script file
	CHGDIR -- Change local default folder
	CONNECT -- Open direct connection
	CONSOLE -- Control output to console window
	COPY -- Copy one local file to another location
	CREATEMAIL -- Create an e-mail message
	CRON -- Schedule script operations
	DATEADD-- Add specified number of days to date variable
	DATESUB -- Subtract specified number of days from date variable
	DBCLOSE -- Close and optionally delete SQL database file
	DBGETRESULTS -- Get results from a SQL database query
	DBQUERY -- Issue a SQL query
	DBREWIND -- Reset query results pointer to first row of results
	DBUSE -- Create and/or open a SQL database file
	DEC -- Decrement a variable by one
	DELDIR -- Delete an empty local folder
	DELETE -- Delete a local file
	DIAL -- Initiate modem auto-dialer
	DIFF -- Look for differences in the local PC file system
	DIFFREWIND -- Reset file pointer for GETDIFF command
	DISPLAY -- Display all or a specified variable
	DISCONNECT -- Disconnect the line
	DOSCMD -- Execute an MS-DOS command
	ENDFUNCTION -- End function declaration
	ENDFUNCTIONS -- End function declaration section
	EXEC -- Execute a external program
	EXIT -- Quit FileLink
	EXPORT -- Export Configuration Settings
	FLUSH -- Flush characters from receive buffer
	FUNCTION -- Begin a function declaration
	GETDIFF -- Get specific changes within local PC file system
	GETFILE -- Get file from folder structure on local PC
	GETMAIL -- Get an e-mail message
	GETNEXTFILE -- Get file or folder names on local PC
	GETREWIND -- Reset file pointer for GETFILE command
	GO -- Rerun the currently defined script file
	GOTO -- Direct flow to label
	IFDATE -- Conditional branch upon file date comparison
	IFERROR -- Conditional branch after testing result code
	IFFILE -- Conditional branch on file existence
	IFNFILE -- Conditional branch on file non-existence
	IFNO -- Conditional branch if 'No' is clicked in ASK dialog box
	IFNSTRCMP -- Conditional branch when two string variables are not equal
	IFNSUBSTR -- Conditional branch if sub-string is not found in string variable
	IFNUM -- Conditional branch upon numeric variable comparison
	IFSIZE -- Conditional branch upon file size comparison
	IFSTRCMP -- Conditional branch when two string variables are equal
	IFSUBSTR -- Conditional branch if sub-string is found in string variable
	IFTIME -- Conditional branch upon time comparison
	IFYES -- Conditional branch if 'Yes' is clicked in ASK dialog box
	IMPORT -- Import Configuration Settings
	INC -- Increment a variable by one
	LINEIN -- Read one or more characters from COM port
	LINEOUT -- Write one or more characters to COM port
	LISTDIR -- List local directory to a file
	LOG -- Control the script log file
	LOGMSG -- Write a message to the script log file
	LOGNTEVENT -- Write a message to the NT application event log
	LOOPIF -- Conditional branch used in conjunction with LOOPCOUNT
	LOOPTO -- Unconditional branch used in conjunction with LOOPCOUNT
	LOOPCOUNT -- Set maximum loop repetition
	MAILTO -- Send an e-mail message via default e-mail client
	MAKEDIR -- Create a new local folder
	MAKEFILENAME -- Create a unique, non-existent file name
	MESSAGEBOX -- Display text in message box
	MINIMIZE -- Minimize FileLink window
	MODEMCMD -- Send AT command string to modem
	MODEMDEFAULTS -- Set modem to factory defaults
	MODEMDETECT -- Locate first available modem and/or COM port
	MODEMRESET -- Send reset to modem
	MODEMRESP -- Read modem response
	MOVE -- Move one local file to another location
	NATO -- Specify a no activity time-out
	PAUSE -- Pause for specified length of time or until specified hour:minute
	PERFORM -- Execute script command contained in character string or variable
	PGPCOMMAND -- Send a "raw" GnuPG command
	PGPDECRYPT -- Decrypt a PGP encrypted file
	PGPENCRYPT -- Encrypt a file using PGP
	PGPIMPORT -- Import a PGP key
	PLAYSOUND -- Play a sound (.wav) file
	PRESSANYKEY -- Suspend script execution pending a key press
	PRINT -- Print a file
	PROMPT -- Display message box with title and prompt, and accept user input
	PROTOCOL -- Specify default file transfer protocol
	RCVFILE -- Receive one or more files
	READFILE -- Read string variable value from text file
	REMOTECMD -- Perform a script command received via a COM port
	RENAME -- Rename a file
	RESTORE -- Restore minimized FileLink window to original size
	RESUME -- Resume script execution from a breakpoint
	RETURN -- Return from a called script file or function
	SENDCMD -- Send script command (same as LINEOUT)
	SENDFILE -- Send one or more files
	SENDMAIL -- Send an e-mail message
	SET -- Assign or concatenate string variable(s)
	SETEXTRACT -- Extract delimited substring from a string
	SETLEFT -- Extract left substring
	SETLEN -- Assign length of specified string to a variable
	SETMID -- Extract mid substring
	SETNUM -- Assign or evaluate numeric variable(s)
	SETRIGHT -- Extract right substring
	SETSUBSTR -- Find number of substrings in string
	SNAPSHOT -- Take a “snapshot” of the local PC file system
	SPEAKER -- Control modem speaker mode
	SRVNAME -- Define service name and control interaction with SrvMonitor
	STOP -- Stops script processing
	TERMINAL -- Activate Terminal applet
	TRACELOG -- Control the trace log file
	TRACEWIN -- Activate/deactivate trace window
	UNZIP - Extract file(s) from a zip archive
	USEPORT -- Specify COM port and/or port settings
	WORKINGDIR -- Specify default working folder
	WRITEFILE -- Write character string or string variable value to text file
	ZIP -- Create or add to a zip archive

	Sample Script Files
	Simple Async Dial-Up Connection
	Simple Async Dial-Up Connection With Error Recovery
	Dial-Up Connection Performing a Logon
	Dial-In Connection With Authorization

	Installing FileLink as an NT Service
	Shutting Down a Running FileLink Service

	Monitoring a FileLink Service
	Using the CronMaker Utility
	CronMaker Event Creation Example
	CronMaker Event Creation Example P2
	CronMaker Event Creation Example P3
	CronMaker Event Creation Example P4
	Cron Event File Format

	Using COM/OLE to Control FileLink
	COM/OLE Operational Overview
	Sample C++ and Visual Basic Project Files
	FileLink COM/OLE Interface Description - A Programmer's View
	FLStartSession -- Method to initiate a FileLink session
	FLEndSession -- Method to terminate a FileLink session
	FLSendCommand -- Method to send a script command to FileLink
	FLStopCommand -- Method to stop a running FileLink script command
	FLGetVariable -- Method to get the value of a FileLink script variable
	FLGetVBSVariable -- VBS method to get the value of FileLink script variable
	FLCommandProgress -- Event fired to update SENDFILE/RCVFILE progress
	FLCommandResult -- Event fired at the conclusion of a non-blocking command
	FLLogMsgs -- Event fired to provide script log information
	COM/OLE Return Codes
	Sample VBScript Program

	Using Script File Result Codes

